Spinal Fusion Implant with Embedded Biomechanically Powered Sensor
带有嵌入式生物力学驱动传感器的脊柱融合植入物
基本信息
- 批准号:10603735
- 负责人:
- 金额:$ 27.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AreaBackBack PainBiofeedbackBiomechanicsBone GrowthBone structureCOVID-19CalibrationClinicalCollectionComputer softwareCustomDataDevelopmentDevicesElectric StimulationElectrodesEnsureEnvironmentExcisionFailureFrequenciesFundingFutureGoalsGrowthHarvestHealth Care CostsHealth PersonnelHumanHuman bodyImageImplantIn SituIndustryLinear RegressionsMeasuresMechanicsMedicalMethodsMiniaturizationMonitorMotionOffice VisitsOperative Surgical ProceduresOutcomeOutcome MeasureOutputPainPatient CarePatient Outcomes AssessmentsPatient Self-ReportPatient-Focused OutcomesPatientsPersonsPhasePhysiciansPhysiologic pulsePhysiologicalPopulationPostoperative PeriodProcessPublishingReportingRiskRisk ReductionRuralSafetySheepSignal TransductionSiteSmall Business Innovation Research GrantSmokerSpinalSpinal FusionSurfaceSurgeonTechnologyTestingTextureTimeTranslatingValidationVertebral columnVisitWalkingWorkX-Ray Computed TomographyX-Ray Medical Imagingbasebiomaterial compatibilitybonebone healingcare costscommercializationconditioningcostcost effectivedata acquisitiondata exchangedata toolsdesigndiabeticearly phase clinical trialelectric impedanceexperiencehealinghealth care availabilityimplantable deviceimprovedin vivomechanical loadmedical implantminiaturizemobile applicationpreventprototypesensorsimulationsuccessverification and validationvoltagewireless
项目摘要
PROJECT SUMMARY
The objective of this Phase I SBIR is to develop a spinal fusion implant with embedded biomechanically
powered sensor. Evoke Medical’s core technology is to create human-powered implantable devices that utilize
piezoelectric materials to generate load-induced power. That power can then be used for various purposes:
electrical stimulation of bone growth and/or load-sensing to track fusion progression. Through our current Phase
II project, a fully integrated piezoelectric transforaminal lumbar interbody fusion (TLIF) implant was developed
with embedded power generator and miniaturized circuitry for signal conditioning. In this TLIF implant, lower
impedance piezoelectric materials were used to generate power for mechanically synced direct current (DC)
electrical stimulation delivered to an electrode on the implant surface for the purposes of enhancing bone growth.
No batteries are used in any Evoke Medical implant as all energy is biomechanically induced by human motion.
Our preliminary work has also shown that a piezoelectric interbody implant can act as a sensor and distinguish
between different applied physiological loads that correlate to fusion progression.
In other industries, piezoelectric materials are often used as load sensors. In situ, mechanical loads applied to
the piezoelectric device generate proportional electrical voltages that can be translated back to quantify the
applied load on the device. Evoke Medical will use this inherent ability of piezoelectric materials to characterize
the change in load environment within the disc space, and subsequently provide objective data to the clinician
and patient to inform post-operative outcomes and treatment decisions. In spinal fusion, the load on the implant
is highest when the device is first implanted and there is no bony fusion mass around and throughout the implant.
As fusion progresses, the load on the implant is reduced according to the fusion grade achieved due to the
increased surface area and stiffness of the growing bone structure. In this proposal, we will prove that a
custom piezogenerator embedded in a spinal fusion implant with the associated circuit hardware and
data acquisition software can collect, store, and wirelessly transmit changes in load within the interbody
space. These changes can then be related back to fusion progression and other post-operative outcomes.
Evoke Medical has already developed cost-effective manufacturing methods and demonstration of safety and
efficacy of the stimulating aspect of the piezoelectric TLIF that is moving forward in the commercialization
process through a DeNovo regulatory strategy. In these verification tests, we have also proven that we can
successfully harvest patient motion and convert that to usable power under physiological loading conditions. By
developing the load sensing aspect of the TLIF implant now, Evoke Medical will be able to jumpstart our
capabilities to provide patients with biofeedback on how their implant is helping them. It will give surgeons the
ability to quantify healing progress without the multitude of expensive CT scans or potentially biased patient
reported outcome measures. This will allow the physician to make informed postoperative treatment decisions
that could greatly improve the chances of fusion success. Commercialization of this remote load sensing data
tool for spinal fusion patient care is disruptive, will help to reduce healthcare costs, and simultaneously enhance
patient care, particularly in rural or remote areas or in times of limited access to healthcare providers (e.g. during
COVID-19).
In this Phase 1 project, we will first establish that utilizing a textured piezogenerator embedded in a TLIF implant
will power the necessary components in a prototype load sensing circuit. The functionality of integrating the
developed sensor circuit with a data acquisition framework will be verified through a large range of applied
physiologic load conditions. Proving that the Evoke piezoelectric TLIF can accurately sense and output
physiologic load data, differentiating between varying loads expected in fusion progression, will de-risk the
integration of sensing and bone stimulating capabilities.
The results of this work will set the stage for Phase II funding to integrate and miniaturize the sensing and
stimulating circuits to create an integrated, dual mode stimulating and sensing spinal fusion implant. As part of
this phase II work, additional in vivo validation ovine studies will be completed to justify moving forward with
commercialization. Following, additional funding will be raised to complete the necessary verification & validation
testing along with early clinical trials required for expanded regulatory claims around addition of the sensing
capability of the TLIF implant. The thoracolumbar spine interbody market is over $1.4B/year with a compound
annual growth rate of 2.9%. The proposed device is hypothesized to increase success of healing and decrease
time to heal, as well as give patients and healthcare providers quantitative outcome measures without expensive
CT scans or biased patient self-reporting. This would decrease overall cost of care and human suffering, as
earlier, data driven post-operative decisions could be made, preventing a failed fusion and additional revision
surgeries.
项目摘要
该阶段I SBIR的目的是开发具有嵌入生物力学的脊柱融合植入物
动力传感器。 Evoke Medical的核心技术是创建利用人类动力的植入式设备
压电材料以产生负载引起的功率。然后可以将这种功率用于各种目的:
骨骼生长和/或负载感应的电刺激以跟踪融合进展。通过当前阶段
II项目,开发了完全集成的压电透射腰部腹部融合(TLIF)植入物
带有嵌入式发电机和微型电路以进行信号调节。在此TLIF植入物中,较低
阻抗压电材料用于生成机械同步直流电(DC)的功率
电气模拟传递到植入物表面的电子,以增强骨骼生长。
由于所有能量都是由人类运动诱导的,因此在任何唤起医学植入物中均未使用电池。
我们的初步工作还表明,压电室内植入物可以充当传感器并区分
在与融合进展相关的不同应用的物理载荷之间。
在其他行业中,压电材料通常被用作负载传感器。原位,机械载荷施加到
压电设备会产生比例的电压,可以翻译回来以量化
在设备上施加了负载。 Evoke Medical将使用压电材料的这种继承能力来表征
光盘空间内的负载环境的变化,随后向临床提供客观数据
和患者以告知术后结果和治疗决策。在脊柱融合中,植入物上的负载
当设备首先植入并且整个植入物周围没有奖励融合质量时,最高。
随着融合的进行,根据由于融合级的融合等级而减少植入物上的负载
表面积增加和生长骨结构的刚度。在此提案中,我们将证明
定制的打击器嵌入与相关电路硬件和相关电路硬件的脊柱融合植入物中
数据采集软件可以收集,存储和无线传输内侧的负载变化
空间。这些变化然后可以与融合进展和其他术后结局有关。
Evoke Medical已经开发了具有成本效益的制造方法,并证明了安全性和
在商业化中向前发展的压电TLIF的刺激方面的功效
通过Denovo监管策略进行处理。在这些验证测试中,我们还证明了我们可以
成功收集患者运动并将其转换为物理负荷条件下的可用功率。经过
现在开发TLIF植入物的负载敏感性方面,Evoke Medical将能够开始我们的
为患者提供有关其植入物如何帮助他们的生物反馈的能力。它将给外科医生
无需大量昂贵的CT扫描或可能有偏见的患者而量化愈合进度的能力
报告的结果指标。这将使身体做出明智的术后治疗决策
这可以大大提高融合成功的机会。此遥控载荷传感数据的商业化
脊柱融合患者护理的工具具有破坏性,将有助于降低医疗保健成本,并简单地增强
患者护理,尤其是在偏远地区或偏远地区,或者在获得医疗保健提供者有限的时期(例如,
新冠肺炎)。
在此阶段1项目中,我们将首先确定使用嵌入在TLIF植入物中的纹理压电器
将在原型负载传感电路中为必要的组件供电。集成的功能
具有数据采集框架的开发传感器电路将通过大量应用验证
生理负荷条件。证明唤起压电TLIF可以准确感知和输出
生理负载数据,区分融合进展中预期的不同负载,将脱离风险
敏感性和骨骼刺激能力的整合。
这项工作的结果将为II期资金奠定阶段,以整合和微型化的敏感性和
刺激电路以创建一个集成的双重模式刺激和感应脊柱融合植入物。作为
这二阶段工作,将完成其他体内验证卵巢研究,以证明前进的合理性
商业化。以下,将筹集额外的资金以完成必要的验证和验证
在添加传感器围绕扩展的调节主张所需的早期临床试验以及早期的临床试验中进行测试
Thoracolumbar脊柱室内市场超过$ 1.4B/年,复合材料
年增长率为2.9%。假设所提出的设备可以增加愈合的成功和减少
是时候治愈的时间,并为患者和医疗保健提供者提供定量结果指标而无需昂贵的结果
CT扫描或偏见的患者自我报告。这将降低护理和人类苦难的总体成本,因为
早些时候,可以做出数据驱动的术后决定,以防止融合失败和其他修订
手术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leighton LaPierre其他文献
Leighton LaPierre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leighton LaPierre', 18)}}的其他基金
Development of an Osteoinductive Spinal Fusion Implant for Enhanced Fusion Rates
开发骨诱导脊柱融合植入物以提高融合率
- 批准号:
9753124 - 财政年份:2016
- 资助金额:
$ 27.49万 - 项目类别:
相似国自然基金
基于裂隙黄土斜坡模型试验的渐进后退式滑坡成灾机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于裂隙黄土斜坡模型试验的渐进后退式滑坡成灾机理研究
- 批准号:42207184
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
嵌入后退式分离的复杂流动干扰与分离动力学研究
- 批准号:U21B2054
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:联合基金项目
滑模与适定运动统一的稳定条件及基于值函数的受约束切换系统控制研究
- 批准号:61773006
- 批准年份:2017
- 资助金额:51.0 万元
- 项目类别:面上项目
干热河谷冲沟沟头后退的水力、重力协同作用机制
- 批准号:41571277
- 批准年份:2015
- 资助金额:74.0 万元
- 项目类别:面上项目
相似海外基金
Operant conditioning of sensory evoked potentials to reduce phantom limb pain
感觉诱发电位的操作性条件反射可减少幻肢痛
- 批准号:
10703170 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
- 批准号:
10649741 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Innovative Chair to Prevent Pressure Injuries in Persons Living with Alzheimer's Disease and Related Dementias
预防阿尔茨海默病和相关痴呆症患者压力损伤的创新椅子
- 批准号:
10760048 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
- 批准号:
10828665 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别: