New Risk Models for Diabetes Complications Using Electronic Health Records
使用电子健康记录的糖尿病并发症的新风险模型
基本信息
- 批准号:10597118
- 负责人:
- 金额:$ 69.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:African AmericanAfrican American populationAfrican CaribbeanAmputationAsianAsian AmericansAsian IndianBehavior TherapyBehavioralBiologicalBlack raceBlindnessBritishCaliforniaCessation of lifeCharacteristicsChronic DiseaseComplications of Diabetes MellitusCongestive Heart FailureCost Effectiveness AnalysisDataData SetDiabetes MellitusDiabetic RetinopathyDiagnosisDisease ProgressionDisparityEast AsianEducationElectronic Health RecordEquationEquityEthnic OriginEthnic PopulationEventExerciseGoalsHealthHealth behaviorHealthcare SystemsHispanicHispanic AmericansIncidenceIndividualInformation SystemsIntegrated Health Care SystemsKidney FailureLeftMethodologyModelingMyocardial InfarctionMyocardial IschemiaNeeds AssessmentNon-Insulin-Dependent Diabetes MellitusOutcomeOutcome StudyPatient EducationPatient Self-ReportPatientsPersonsPhysical activityPlayPopulationPopulation GroupPopulation HeterogeneityPreparationPrevalenceRaceReportingRiskRisk EstimateRoleSamplingSampling StudiesServicesStrokeSubgroupTimeUlcerUnited KingdomUnited StatesUpdateValidationWeight maintenance regimenclinical decision supportcohortcostdiabetes educationdiabetes managementdiabetes riskdiabetic ulcerdiet and exerciseexperiencefollow-uphealth equityimprovedlifetime riskmembermodels and simulationmortalitynutritionoutcome predictionprospectiveracial differenceracial populationrisk stratificationsecondary analysissemiparametricsocialsociodemographics
项目摘要
Abstract
Diabetes incidence and prevalence remain at record highs in the United States. Understanding
diabetes disease progression and how it varies among America’s heterogeneous population is critical, given
unequal risks and outcomes for individuals of different racial/ethnic groups. Diabetes outcome prediction and
simulation models allow prediction of a person’s risk for diabetes complications and death. A recent review of
19 such models found that the majority—16 models—relied at least partly on transition functions developed by
the United Kingdom Prospective Diabetes Study (UKPDS). The UKPDS draws on data from a trial that began
in 1977 and involved 5100 patients who were followed for a total of 89,760 person years. The sample
consisted of mostly white British citizens. Only 8% and 10% of the UKPDS sample were Indian Asian and Afro-
Caribbean patients, respectively. The major racial/ethnic groups that make up the US population were not
included, and the variables studied in the UKPDS did not include any behavioral data. Long term, longitudinal
patient data on diabetes outcomes is costly to collect and all information on the UKPDS Outcomes Models has
been transparently reported and made publicly available. This has left the UKPDS risk models as the best
option for many risk engines, despite the small, dated and nondiverse sample that it is based on.
Capitalizing on Kaiser Permanente Southern California (KPSC) Electronic Health Records (EHR) data
and legacy data systems, we identified over 527,000 patients with incident diabetes that were diagnosed and
treated at KPSC from 1993 to 2020. Our sample provides more than 4.4 million person-years of follow up.
More than 34,000 patients could be followed up for 21 or more years. The incident diabetes cohort from KPSC
is 34.4% Hispanic, 10.6% Asian and 12.7% African American or Black allowing us to update the risk equations
for all UKPDS outcome models by major race-ethnicity groups directly relevant for the U.S population. These
updated models will allow us to identify disparities in diabetes, assure statistical fairness, and improve
prediction of diabetes outcomes for diverse population groups.
Because diabetes outcomes are largely influenced by health behaviors, we will also analyze behavioral
data captured in the EHR including data on exercise and referrals to diabetes and weight management
education classes. We will use cutting edge parametric, semi-parametric and non-parametric models to re-
estimate risk equations using standard split sample cross-validation. We will report our methodology and
results transparently in the same format as the UKPDS. Our study will help to update existing simulation
models and support more timely and equitable clinical decision support and patient education.
抽象的
在美国,糖尿病的发病率和患病率仍然保持创纪录的高潮。理解
糖尿病疾病进展及其在美国异质种群中的变化至关重要
不同种族/种族群体个人的不平等风险和结果。糖尿病结果预测和
模拟模型可以预测一个人患糖尿病并发症和死亡的风险。最近对
19这样的模型发现,大多数(16个模型)至少部分地归于由
英国前瞻性糖尿病研究(UKPDS)。 UKPD借鉴了开始的试验数据
在1977年,涉及5100名患者,这些患者总计89,760年。样本
主要由白人英国公民组成。 UKPDS样本中只有8%和10%是印度亚洲和非洲人
加勒比患者分别。组成美国人口的主要种族/族裔不是
包括UKPDS中的变量不包括任何行为数据。长期,纵向
有关糖尿病结果的患者数据的收集成本很高,并且有关UKPDS结果的所有信息
被透明地报告并公开可用。这使UKPDS风险模型成为最好的
对于许多风险引擎,dospite的选项,其基于的小型,过时和非宇宙样本。
大写凯撒(Kaiser Permanente)南加州(KPSC)电子健康记录(EHR)数据
和传统数据系统,我们确定了527,000多名被诊断出和的患者
从1993年到2020年,在KPSC接受治疗。我们的样本提供了超过440万人的随访。
超过34,000名患者可以随访21岁以上。来自KPSC的事件糖尿病队列
是34.4%的西班牙裔,10.6%的亚洲人和12.7%的非裔美国人或黑人,使我们能够更新风险方程
对于所有与美国人口直接相关的主要种族种族群体的UKPDS结果模型。这些
更新的模型将使我们能够识别糖尿病中的分布,确保统计公平并改善
对潜水员人群群体的糖尿病结果的预测。
由于糖尿病结果在很大程度上受到健康行为的影响,因此我们还将分析行为
EHR中捕获的数据包括运动和转介到糖尿病和体重管理的数据
教育课。我们将使用尖端参数,半参数和非参数模型来重新
使用标准拆分样品交叉验证估算风险方程。我们将报告我们的方法论
结果与UKPD的格式透明。我们的研究将有助于更新现有的模拟
模型和支持更及时,公平的临床决策支持和患者教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claudia Leonie Nau其他文献
Claudia Leonie Nau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Polygenic Risk Scores for Alzheimer's Disease in Hispanic/Latinx Populations
西班牙裔/拉丁裔人群阿尔茨海默病的多基因风险评分
- 批准号:
10662781 - 财政年份:2023
- 资助金额:
$ 69.14万 - 项目类别:
Genetic Architecture of Early-Onset Psychosis in Mexicans (EPIMex)
墨西哥人早发性精神病的遗传结构 (EPIMex)
- 批准号:
10716496 - 财政年份:2023
- 资助金额:
$ 69.14万 - 项目类别:
Community to Molecular Approaches in Early Screening and Diagnosis to Promote Equitable Outcomes Through the Continuum of Care in Cancer Among Populations of African Ancestry
社区采用分子方法进行早期筛查和诊断,通过对非洲裔人群癌症的持续护理来促进公平结果
- 批准号:
10754038 - 财政年份:2023
- 资助金额:
$ 69.14万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686541 - 财政年份:2023
- 资助金额:
$ 69.14万 - 项目类别: