Dopamine modulation for the treatment of chronic dysfunction due to traumatic brain injury
多巴胺调节治疗创伤性脑损伤引起的慢性功能障碍
基本信息
- 批准号:10594159
- 负责人:
- 金额:$ 24.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimalsAttentionBehaviorBehavioralChronicClinicalClinical DataDataData SetDecision MakingDiscriminationDopamineExperimental DesignsFunctional disorderGoalsGrantGroupingImpulsivityIndividualInjuryInterventionMachine LearningMultiple TraumaPathologyPharmacological TreatmentRattusResearch PersonnelRisk FactorsSeveritiesShapesStandardizationTBI treatmentTechniquesTestingTrainingTraumatic Brain InjuryValidationbaseimprovedlarge datasetsmultidimensional datamultiple datasetsnovelplacebo grouppre-clinicalresiliencesupervised learningunsupervised learning
项目摘要
Project Summary/Abstract
The current supplement to an R01 grant will augment the initial project. As a result of the initial R01 project, we
have completed multiple datasets describing deficits in attention, impulsivity, and decision-making after traumatic
brain injury (TBI) in rats. This resulted in millions of lines of data across individual studies – a rare phenomenon
for animal TBI. The goal of the current supplement is to compile these into two large datasets for multidimensional
analytics and apply cutting-edge machine learning techniques to determine if behavior and pathology can
discriminate groupings (e.g., TBI from sham) and what factors determine individual vulnerability and resilience
to injury. One dataset will comprise risky decision-making and have roughly 1.5 million lines of data, with
approximately 70% corresponding to “pure” sham or TBI conditions (i.e., no other interventions). The second
dataset will have roughly 850,000 lines of data, with approximately 80% corresponding to “pure” sham or TBI
conditions, and with multiple injury severities. We will apply supervised machine learning techniques to validate
discrimination of injury from sham groups based on behavior alone, or pathophysiology, and then test the most
robust algorithms against smaller subpopulations which received an intervention (e.g., pharmacological
treatment). We will also use unsupervised machine learning techniques to identify subpopulations within the TBI
group, particularly with reference to vulnerability and resilience. For each of these approaches, we will compare
a large battery of algorithms to determine which are strongest or provide the greatest utility. With large datasets
such as this, we can subdivide into training, testing, and validation sets to maximize rigor. This is a unique
opportunity because robust, standardized behavioral datasets such as this are rare in preclinical TBI. This will
allow us to better align clinical and pre-clinical data, identify risk factors and potential treatment avenues, and
improve the utility of machine learning for the study and treatment of TBI. The harmonized datasets will be made
publicly available to enable other researchers to explore novel questions and shape experimental design.
项目摘要/摘要
R01赠款的当前补充将增加初始项目。由于初始R01项目,我们
已经完成了多个数据集,描述了创伤后注意力,冲动性和决策的定义
大鼠脑损伤(TBI)。这导致了各个研究的数百万个数据 - 一种罕见的现象
用于动物TBI。当前补充的目的是将它们编译为两个大数据集以进行多维
分析并应用尖端的机器学习技术来确定行为和病理是否可以
区分分组(例如,Sham的TBI),哪些因素决定了个人脆弱性和韧性
受伤。一个数据集将完成风险的决策,并具有大约150万行数据,其中
大约70%对应于“纯”假或TBI条件(即没有其他干预措施)。第二个
数据集将具有大约850,000行数据,大约80%对应于“纯”假或TBI
条件,以及多重伤害严重性。我们将应用监督的机器学习技术来验证
仅根据行为或病理生理学来歧视假手术组的伤害,然后测试最多
强大的算法针对接受干预的较小亚群(例如,药理
治疗)。我们还将使用无监督的机器学习技术来识别TBI中的亚群
小组,特别是参考脆弱性和韧性。对于每种方法,我们都会比较
大量的算法来确定哪些算法是强大的或提供最大的实用程序。带有大数据集
这样,我们可以将其细分为培训,测试和验证集,以最大程度地提高严谨性。这是一个独特的
机会是因为在临床前TBI中很少有这样的稳健,标准化的行为数据集。这会
允许我们更好地调整临床和临床前数据,确定危险因素和潜在的治疗途径,以及
改善机器学习对TBI的研究和治疗的效用。将制作协调的数据集
公开可用于使其他研究人员能够探索新颖的问题并塑造实验设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cole Vonder Haar其他文献
Cole Vonder Haar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cole Vonder Haar', 18)}}的其他基金
Dopamine modulation for the treatment of chronic dysfunction due to traumatic brain injury
多巴胺调节治疗创伤性脑损伤引起的慢性功能障碍
- 批准号:
10163928 - 财政年份:2019
- 资助金额:
$ 24.1万 - 项目类别:
Dopamine modulation for the treatment of chronic dysfunction due to traumatic brain injury
多巴胺调节治疗创伤性脑损伤引起的慢性功能障碍
- 批准号:
10400280 - 财政年份:2019
- 资助金额:
$ 24.1万 - 项目类别:
Dopamine modulation for the treatment of chronic dysfunction due to traumatic brain injury
多巴胺调节治疗创伤性脑损伤引起的慢性功能障碍
- 批准号:
10616545 - 财政年份:2019
- 资助金额:
$ 24.1万 - 项目类别:
Dopamine modulation for the treatment of chronic dysfunction due to traumatic brain injury
多巴胺调节治疗创伤性脑损伤引起的慢性功能障碍
- 批准号:
10426388 - 财政年份:2019
- 资助金额:
$ 24.1万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
The Function of Sleep in Critical Period Plasticity
睡眠在可塑性关键期的作用
- 批准号:
10590177 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Neural Correlates of Auditory, Visual, and Audiovisual Motion Perception in Macaque Extrastriate Cortex
猕猴纹状体外皮层听觉、视觉和视听运动知觉的神经相关性
- 批准号:
10751148 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
- 批准号:
10535708 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Translational Studies in FLASH Particle Radiotherapy
FLASH粒子放射治疗的转化研究
- 批准号:
10333797 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别: