The Role of Mono-ADP-Ribosylation by PARP14 in Radioresistance
PARP14 的单 ADP 核糖基化在放射抗性中的作用
基本信息
- 批准号:10594033
- 负责人:
- 金额:$ 37.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:ADP ribosylationAffectBRCA deficientBRCA1 ProteinBRCA2 ProteinBindingBiochemicalBiological AssayCell physiologyCellsChemotherapy and/or radiationChromosomal translocationClinicClinicalComplexDNADNA DamageDNA Double Strand BreakDNA RepairDNA biosynthesisDNA lesionDNA replication forkDevelopmentDouble Strand Break RepairEXO1 geneExcisionFamilyGenomeGenome StabilityGenomic DNAGenomic InstabilityGoalsHealthHumanKnowledgeLesionMeasuresMediatingMutagenesisPathway interactionsProcessProteinsRadiationRadiation ToleranceResistanceRoleSingle-Stranded DNASister ChromatidSiteStructureTestingTumor MarkersTumor Suppressioncancer riskcancer therapycarcinogenesiscell typechemotherapyenvironmental agentgenotoxicityhomologous recombinationinhibitormembermutantnovelnovel markernucleaseradiation resistanceradiation responserecruitresponserisk predictiontranslocasetumor
项目摘要
Project Summary
DNA double stranded breaks (DSBs) interfere with cellular viability, but also initiate chromosomal
translocations resulting in genomic instability and promoting carcinogenesis. BRCA1 and BRCA2 proteins are
essential for homologous recombination (HR)-mediated repair of DSBs. Understanding the mechanisms of the
BRCA pathway has broad implications for human health. When replication forks encounter damaged DNA,
they arrest and unless properly processed, they collapse leading to DNA breaks and genomic instability. To
avoid their collapse, stalled forks can be reversed by annealing the two nascent strands to each other, in a
process catalyzed by DNA translocases such as ZRANB3. The BRCA proteins load RAD51 on reversed forks
to protect the DNA ends against degradation by the nuclease MRE11. The ability to protect forks against
degradation corelates with DNA damage sensitivity. Thus, replication fork protection is essential for DNA repair
and genomic stability. However, how protection of stalled replication forks against nucleolytic degradation is
achieved represents a major knowledge gap. The PARP family at least 17 members, with various and lesser
understood functions than the founding member PARP1. PARP14 has been associated with multiple cellular
processes, but mechanistic details are generally sparse. We previously showed that PARP14 loss reduces HR
efficiency and sensitizes cells to radiation. Recently, we have identified a novel role of PARP14 in promoting
replication fork degradation, genomic instability and DNA damage sensitivity, which is the focus on this
application. For this application, our goal is to understand how PARP14 promotes fork degradation, resulting in
DNA damage sensitivity of BRCA-deficient cells. Our overall hypothesis is that PARP14 interferes with the
RAD51-MRE11 mechanism of control of DNA resection at reversed replication forks to trigger nascent strand
degradation, thus enhancing DNA damage sensitivity in BRCA-deficient cells. Aim 1 is to reveal the impact of
PARP14 on RAD51-mediated protection of stalled replication forks. We hypothesize that PARP14 interferes
with BRCA-independent stabilization of RAD51 on reversed forks, to enhance their degradation. Aim 2 is to
uncover how PARP14 engages MRE11 for nucleolytic degradation of damaged forks. We hypothesize that
PARP14 binds to stalled replication forks in BRCA-deficient cells and recruits MRE11 to initiate nucleolytic
degradation of nascent DNA at these structures. Aim 3 is to elucidate the role of KU in fork protection against
nucleolytic resection by EXO1 and MRE11. We hypothesize that KU binding to reversed forks protects them
against EXO1-mediated degradation, but enables nascent strand resection by the MRE11-PARP14 complex.
Since DNA damaging agents promote genomic instability by inducing nascent strand degradation, potentially
underlying their carcinogenesis, successful accomplishment of these Specific Aims would reveal a new
mechanism of genome stability and tumor suppression, centered on PARP14. It may also reveal PARP14 as a
biomarker for the tumor response to radiation and genotoxic chemotherapy, in the context of the BRCA status.
项目概要
DNA 双链断裂 (DSB) 会干扰细胞活力,但也会启动染色体
易位导致基因组不稳定并促进癌变。 BRCA1 和 BRCA2 蛋白是
对于同源重组 (HR) 介导的 DSB 修复至关重要。了解其机制
BRCA 通路对人类健康具有广泛的影响。当复制叉遇到受损的DNA时,
它们会停滞,除非经过适当处理,否则它们会崩溃,导致 DNA 断裂和基因组不稳定。到
为了避免它们的崩溃,可以通过将两条新生链相互退火来逆转停滞的叉,
该过程由 ZRANB3 等 DNA 转位酶催化。 BRCA 蛋白将 RAD51 装载在反向叉上
保护 DNA 末端免受核酸酶 MRE11 的降解。保护货叉的能力
降解与 DNA 损伤敏感性相关。因此,复制叉保护对于 DNA 修复至关重要
和基因组稳定性。然而,如何保护停滞的复制叉免受溶核降解?
所取得的成就代表着重大的知识差距。 PARP家族至少有17名成员,成员种类繁多,数量较少。
比创始成员 PARP1 更了解功能。 PARP14 与多种细胞相关
过程,但机械细节通常很少。我们之前表明 PARP14 损失会降低 HR
效率并使细胞对辐射敏感。最近,我们发现了 PARP14 在促进
复制叉降解、基因组不稳定性和DNA损伤敏感性是本次研究的重点
应用。对于此应用程序,我们的目标是了解 PARP14 如何促进分叉降解,从而导致
BRCA 缺陷细胞的 DNA 损伤敏感性。我们的总体假设是 PARP14 干扰
RAD51-MRE11 控制反向复制叉 DNA 切除以触发新生链的机制
降解,从而增强 BRCA 缺陷细胞的 DNA 损伤敏感性。目标 1 是揭示影响
PARP14 对 RAD51 介导的停滞复制叉的保护。我们假设 PARP14 干扰
与 BRCA 无关的 RAD51 在反向叉上的稳定性,以增强其降解。目标 2 是
揭示 PARP14 如何与 MRE11 结合以对受损叉进行溶核降解。我们假设
PARP14 与 BRCA 缺陷细胞中停滞的复制叉结合,并招募 MRE11 启动溶核
这些结构中新生 DNA 的降解。目标 3 是阐明 KU 在前叉保护中的作用
EXO1 和 MRE11 进行溶核切除。我们假设 KU 与反向叉的结合可以保护它们
对抗 EXO1 介导的降解,但能够通过 MRE11-PARP14 复合物切除新生链。
由于 DNA 损伤剂通过诱导新生链降解而促进基因组不稳定,因此可能
在其致癌作用的基础上,成功实现这些具体目标将揭示一个新的
以PARP14为中心的基因组稳定性和肿瘤抑制机制。它还可能揭示 PARP14 作为
在 BRCA 状态的背景下,肿瘤对放射和基因毒性化疗反应的生物标志物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Lucian Moldovan其他文献
George Lucian Moldovan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Lucian Moldovan', 18)}}的其他基金
The Role of Mono-ADP-Ribosylation by PARP14 in Radioresistance
PARP14 的单 ADP 核糖基化在放射抗性中的作用
- 批准号:
9206998 - 财政年份:2016
- 资助金额:
$ 37.95万 - 项目类别:
The Role of Mono-ADP-Ribosylation by PARP14 in Radioresistance
PARP14 的单 ADP 核糖基化在放射抗性中的作用
- 批准号:
10457195 - 财政年份:2016
- 资助金额:
$ 37.95万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Defining the role of persistent DNA bridges in tumor-intrinsic immune activation in hereditary breast and ovarian cancer
确定持久性 DNA 桥在遗传性乳腺癌和卵巢癌肿瘤内在免疫激活中的作用
- 批准号:
10606942 - 财政年份:2023
- 资助金额:
$ 37.95万 - 项目类别:
SYCP3 Inactivates BRCA2 Increasing Risk of Genomic Instability: Misexpression of germ-line protein, SYCP3, in somatic cells causes BRCA2 functional deficiency increasing risk of genomic instability.
SYCP3 使 BRCA2 失活,增加基因组不稳定的风险:体细胞中种系蛋白 SYCP3 的错误表达会导致 BRCA2 功能缺陷,增加基因组不稳定的风险。
- 批准号:
10606951 - 财政年份:2022
- 资助金额:
$ 37.95万 - 项目类别:
The non-catalytic function of PARP2 in DNA repair and cancer therapy
PARP2在DNA修复和癌症治疗中的非催化功能
- 批准号:
10641934 - 财政年份:2022
- 资助金额:
$ 37.95万 - 项目类别:
The non-catalytic function of PARP2 in DNA repair and cancer therapy
PARP2在DNA修复和癌症治疗中的非催化功能
- 批准号:
10540084 - 财政年份:2022
- 资助金额:
$ 37.95万 - 项目类别: