The NKA Interactome in Health and Disease
健康与疾病中的 NKA 相互作用组
基本信息
- 批准号:10593139
- 负责人:
- 金额:$ 68.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAffinityAlzheimer&aposs DiseaseBindingBinding ProteinsBiochemistryBiological AssayBiophysicsBudgetsCardiac MyocytesCell VolumesCell membraneCell physiologyCellsChemicalsChicagoComplexComputer ModelsCorneaCoupledCouplingDevelopmentDimerizationDiseaseElectrophysiology (science)EngineeringEnzymesExerciseFailureFamilyFluorescenceFluorescence Resonance Energy TransferFluorescence SpectroscopyFoundationsFunctional disorderGene DeliveryHealthHeartHeart DiseasesHeart HypertrophyHeart failureHumanIon TransportK ATPaseKineticsLaboratoriesLearningMass Spectrum AnalysisMeasurementMembraneMembrane ProteinsMethodsMicroscopyModificationMolecular ConformationNa(+)-K(+)-Exchanging ATPaseParkinson DiseasePathologicPatientsPeptide Sequence DeterminationPeptidesPharmaceutical PreparationsPhosphorylationPhysiologicalPhysiological ProcessesPhysiologyPoisonPost-Translational Protein ProcessingPotassiumProcessProtein FragmentProteinsProteomicsProtomerPublic HealthPumpRegulationResearchResearch PersonnelResearch Project GrantsSamplingSchizophreniaSignal TransductionSite-Directed MutagenesisSodiumStructureTestingTexasTissuesTranslatingTranslational ResearchTransport ProcessUniversitiesWorkarmcell typecofactorconfocal imagingdimerexperimental studyfeasibility testingimprovedinsightmembermutantnovelnovel therapeutic interventionphospholemmanprotein complexprotein degradationprotein protein interactionstructural determinants
项目摘要
Project Summary/Abstract: The Na/K-ATPase (NKA), or “sodium pump”, is an enzyme that transports ions
across cell membranes. Between 30-70% of the cell’s ATP budget is spent by the NKA to create strong
chemical gradients for sodium and potassium. These gradients control cell volume, support electrical signaling
(action potentials) and energize many other transport processes. Disruption of sodium handling is associated
with diseases including cardiac hypertrophy/failure, Parkinson’s disease, schizophrenia, and Alzheimer’s
disease. Various cell types in diverse tissues of the body have very different requirements for Na/K transport,
and transport rates must respond to physiological challenges (e.g. exercise). To adapt NKA to these different
conditions, the pump is regulated by tissue-specific transmembrane peptides that increase or decrease the
pump’s enzymatic activity. In Aim 1 of the project we will focus on the normal physiological regulation of
NKA by FXYDs, testing how FXYD proteins bind and stabilize specific NKA conformations to alter NKA
transport kinetics. We will use novel spectroscopic assays to investigate the structure and stability of different
NKA-FXYD regulatory complexes. We will investigate how physical coupling of two pumps into a single
functional unit can allow faster overall cycling. Aim 2 is the translational arm of the research project. The
research team will investigate how NKA regulation by FXYDs becomes disordered in disease, using proteomic
analysis to compare the NKA-FXYD interactome in healthy and failing human heart tissue. We will determine
whether fragments of digested membrane proteins may disrupt NKA function in disease. We will also test the
feasibility of using gene delivery of an inhibitory species (FXYD1) as a therapy to improve the contraction
strength of a failing heart. Finally, we will compare FXYDs that activate NKA and FXYDs that inhibit NKA.
The project brings together 6 different investigators that specialize in different complementary approaches.
The laboratory of the project PI, Prof. Seth Robia, uses fluorescence spectroscopy and cell physiology to
investigate the structure, affinity, and function of NKA-FXYD complexes in cardiac myocytes and heterologous
cells. He works closely with two Loyola University Chicago colleagues: Jonathan Kirk (Co-I) and Pete
Kekenes-Huskey (Co-I). Prof. Kirk will use proteomics approaches such as mass spectrometry to discover post-
translational modifications and novel NKA regulators. Prof. Kekenes-Huskey will assist with computational
modeling of the protein complexes. Prof. Julie Bossuyt (MPI) will investigate a-a coupling, conducting
microscopy and biochemistry experiments to identify the interaction interface. Prof. Artigas (Co-I) at Texas
Tech will perform detailed electrophysiological analyses of FXYD proteins and membrane protein fragments.
Prof. Razvan Cornea (Consultant) is an expert in membrane protein biophysics. He will advise the team on all
aspects of the project. Together, the collaborators will uncover important new information about NKA-FXYD
structure/function relationships, and learn how these mechanisms become disordered in disease.
项目摘要/摘要:Na/K-ATPase(NKA)或“钠泵”是一种运输离子的酶
跨细胞膜。 NKA花费了30-70%的ATP预算来创造强大
钠和钾的化学梯度。这些梯度控制细胞体积,支持电信号传导
(行动电位)并为许多其他运输过程提供了能量。钠处理的破坏与
疾病包括心脏肥大/衰竭,帕金森氏病,精神分裂症和阿尔茨海默氏症
疾病。人体多样性时机的各种细胞类型对Na/K传输的要求截然不同,
运输率必须应对身体挑战(例如锻炼)。适应NKA这些不同
条件,泵受组织特异性跨膜胡椒的调节
泵的酶活性。在该项目的目标1中,我们将重点介绍
NKA通过FXYD,测试FXYD蛋白如何结合和稳定特定的NKA构象以改变NKA
运输动力学。我们将使用新颖的光谱测定法研究不同的结构和稳定性
NKA-FXYD调节络合物。我们将调查两个泵的物理耦合如何
功能单元可以更快地进行整体循环。 AIM 2是研究项目的转化部门。这
研究小组将使用蛋白质组学研究FXYDS的NKA调节如何在疾病中变得无序
分析以比较健康和失败的人类心脏组织中的NKA-FXYD相互作用。我们将确定
消化的膜蛋白的碎片是否可能破坏NKA在疾病中的功能。我们还将测试
使用抑制物种(FXYD1)作为改善收缩的疗法的可行性
心脏失败的力量。最后,我们将比较激活抑制NKA的NKA和FXYD的FXYD。
该项目汇集了6位专门研究不同完整方法的不同研究人员。
PI项目的实验室Seth Robia教授使用荧光光谱和细胞生理学
研究心肌和异源的NKA-FXYD复合物的结构,亲和力和功能
细胞。他与两位洛约拉大学芝加哥同事密切合作:乔纳森·柯克(Co-I)和皮特
Kekenes-Huskey(Co-I)。柯克教授将使用蛋白质组学方法(例如质谱法)来发现后发现
翻译修改和新型NKA调节器。 Kekenes-Huskey教授将协助计算
蛋白质复合物的建模。 Julie Bossuyt教授(MPI)将调查A-A耦合,进行
显微镜和生物化学实验以识别相互作用界面。德克萨斯州Artigas(CO-I)教授
技术将对FXYD蛋白和膜蛋白片段进行详细的电生理分析。
Razvan Cornea教授(顾问)是膜蛋白生物物理学的专家。他会建议团队所有人
项目的各个方面。合作者将共同发现有关NKA-FXYD的重要新信息
结构/功能关系,并了解这些机制如何在疾病中变得无序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julie B Bossuyt其他文献
Julie B Bossuyt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julie B Bossuyt', 18)}}的其他基金
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Tau-mediated synaptic dysfunction in age-related neurodegenerative diseases
年龄相关神经退行性疾病中 Tau 介导的突触功能障碍
- 批准号:
10729927 - 财政年份:2023
- 资助金额:
$ 68.36万 - 项目类别:
Role of vesicular TRPM7 channels in synaptic vesicle endocytosis
囊泡 TRPM7 通道在突触小泡内吞作用中的作用
- 批准号:
10599950 - 财政年份:2019
- 资助金额:
$ 68.36万 - 项目类别:
Role of vesicular TRPM7 channels in synaptic vesicle endocytosis
囊泡 TRPM7 通道在突触小泡内吞作用中的作用
- 批准号:
10133166 - 财政年份:2019
- 资助金额:
$ 68.36万 - 项目类别:
Role of vesicular TRPM7 channels in synaptic vesicle endocytosis
囊泡 TRPM7 通道在突触小泡内吞作用中的作用
- 批准号:
9974563 - 财政年份:2019
- 资助金额:
$ 68.36万 - 项目类别: