Two-photon fluorescence lifetime imaging microscopy utilizing the space-time duality
利用时空二象性的双光子荧光寿命成像显微镜
基本信息
- 批准号:10593761
- 负责人:
- 金额:$ 20.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-02 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAge related macular degenerationAlzheimer&aposs DiseaseBenchmarkingBiologicalColorComplexData AnalysesDetectionDevelopmentDiagnosisDietary CarotenoidDyesEarly DiagnosisElectronsEnvironmentFamily suidaeFeedbackFiberFluorescenceFundusFutureHydration statusImageImaging technologyIonsLasersLightLuteinMachine LearningMeasuresMetabolismMethodsMolecular ConformationMonitorMusNeurodegenerative DisordersNeurosciencesNicotinamide adenine dinucleotideNoiseOphthalmologyOpticsPhasePhotonsPhototoxicityPhysiologic pulseProtocols documentationRetinaSiliconesSourceSpeedSystemTechnologyTemperatureTimeTissue ModelTissuesTrainingViscositybrain tissuecryogenicsex vivo imagingexperimental studyfluorescence imagingfluorescence lifetime imagingfluorescence microscopefluorophoreimaging studyin vivoinnovationinsightinstrumentinventionlight microscopylight weightmachine learning frameworkmaculamicroscopic imagingmultiphoton microscopynanowirephoton-counting detectorprotein protein interactionresponsestatisticsthree dimensional structuretwo-dimensionaltwo-photonzeaxanthin
项目摘要
PROJECT SUMMARY
Fluorescence lifetime imaging microscopy (FLIM) is a type of fluorescence imaging technologies that is
gaining popularity in biomedicine because it delivers the most direct insight into the molecular conformation and
the biological environment of a fluorophore. FLIM has been applied to provide insights into the cellular
metabolism, protein-protein interactions, and biological environment monitoring of temperature, viscosity, pH,
and ion concentration. Despite the wealth of information provided by the FLIM, its widespread application is
currently limited by the low imaging speed. The FLIM imaging speed is a complex function of many factors, with
shot noise by the photon counting statistics being the fundamental limit. This limitation is especially dominant for
fluorophores with lifetime shorter than the FLIM instrument response function (IRF) when deconvolution is
necessary to accurately determine the fluorescence lifetime. Thus, to fundamentally enhance the FLIM imaging
speed, either an increase of the maximum photon counting rate or a reduction of the FLIM IRF is necessary.
Time-domain FLIM with high photon efficiency can be implemented with either time-correlated single-photon
counting (TCSPC) or photon counting streak camera (PCSC). The maximum photon counting rate of state-of-
the-art time-domain FLIM is 1-10 mega counts per second (Mcps), limited by the pile up effect in TCSPC-FLIM
and the readout nonlinearity and crosstalk in PCSC-FLIM. TCSPC-FLIM generally has a 100-ps IRF, unless
superconducting nanowire single-photon detectors that require cryogenic cooling are implemented to reach the
picosecond regime. On the other hand, PCSC-FLIM can achieve the picosecond IRF at room temperature, but
complex streaking and detection optoelectronics are required. Using PCSC-FLIM, a recent study on Alzheimer
mouse brain tissue has found a new 30-ps lifetime component, critical for separating Alzheimer disease from
normal brain tissue, of nicotinamide adenine dinucleotide hydrate (NADH). Without the 10-ps IRF of PCSC-FLIM,
such fast fluorescence decay could not have been observed within a reasonable amount of time. Similarly, a
short IRF will benefit the study of short-lived non-lipofuscin autofluorophores (30-70 ps) that will lead to a better
understanding of the fundus autofluorescence diagnosis and may provide relevant retina information for the early
detection of age-related macular degeneration and neurodegenerative diseases.
This proposal will develop a potentially transformative FLIM system, photon-streaking FLIM (PS-FLIM), that
addresses the imaging speed challenge by simultaneously reducing the IRF and increasing the maximum photon
counting rate. A new concept of photon streaking, based on the principle of space-time duality, will be
implemented to achieve 5-ps IRF and 840 Mcps in a compact and lightweight platform. Two-photon excitation
will be utilized to increase the imaging depth and reduce the phototoxicity. Finally, machine learning framework
will be incorporated to accelerate the FLIM data analysis.
项目摘要
荧光寿命成像显微镜(FLIM)是一种荧光成像技术
在生物医学中获得流行,因为它对分子构象最直接的见解和
荧光团的生物环境。 Flim已被应用于提供洞察力
代谢,蛋白质 - 蛋白质相互作用以及温度,粘度,pH,pH,
和离子浓度。尽管Flim提供了丰富的信息,但其广泛应用是
目前受到低成像速度的限制。 Flim成像速度是许多因素的复杂函数,
光子计数统计数据的射击噪声是基本限制。这种限制特别主导
当反卷积为时,寿命短于Flim仪器响应函数(IRF)
准确确定荧光寿命所必需的。因此,从根本上增强了FLIM成像
速度,要么需要增加最大光子计数速率,要么需要降低FLIM IRF。
具有高光子效率的时间域FLIM可以用任何时间相关的单光子实现
计数(TCSPC)或光子计数条纹摄像头(PCSC)。最大的光子计数速率
ART时间域FLIM是每秒1-10个巨型计数(MCP),受TCSPC-FLIM中的堆积效果的限制
以及PCSC-FLIM中的读数非线性和串扰。 TCSPC-FLIM通常具有100-PS IRF,除非
实施需要低温冷却的超导纳米线单光子探测器以达到
Picsecond政权。另一方面,PCSC-FLIM可以在室温下实现Picsecond IRF,但是
需要复杂的条纹和检测光电子。使用PCSC-FLIM,这是一项关于阿尔茨海默氏症的研究
小鼠脑组织发现了一个新的30-ps寿命成分,对于将阿尔茨海默氏病与
正常的脑组织,烟酰胺腺嘌呤二核苷酸水合物(NADH)。没有PCSC-FLIM的10-PS IRF,
在合理的时间内无法观察到如此快速的荧光衰减。同样,
简短的IRF将使短寿命的非脂蛋白自动荧光团(30-70 PS)受益,这将导致更好
了解眼底自动荧光诊断,并可能为早期提供相关的视网膜信息
检测与年龄相关的黄斑变性和神经退行性疾病。
该提案将发展一个潜在的变革性flim系统,即光子thtreaking Flim(PS-FLIM),该系统
通过同时减少IRF并增加最大光子来解决成像速度挑战
计数率。基于时空双重性原理的一个新的光子条纹概念将是
在紧凑而轻巧的平台中实现了5-PS IRF和840 MCP。两光蛋白激发
将用于增加成像深度并降低光毒性。最后,机器学习框架
将合并以加速FLIM数据分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shu-Wei Huang其他文献
Shu-Wei Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shu-Wei Huang', 18)}}的其他基金
Nanoparticle-based optical magnetometer for room-temperature magnetoencephalography
用于室温脑磁图的纳米颗粒光学磁力计
- 批准号:
10449972 - 财政年份:2021
- 资助金额:
$ 20.06万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Progression of Early Atrophic Lesions in Age-related Macular degeneration
年龄相关性黄斑变性早期萎缩性病变的进展
- 批准号:
10635325 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
G protein-coupled receptor regulation of transcriptional mechanisms in the retinal vasculature.
G 蛋白偶联受体对视网膜脉管系统转录机制的调节。
- 批准号:
10596099 - 财政年份:2021
- 资助金额:
$ 20.06万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10612906 - 财政年份:2020
- 资助金额:
$ 20.06万 - 项目类别:
Metabolomics a Novel Tool for Investigating the Pathogenesis of Age-related Macular Degeneration
代谢组学是研究年龄相关性黄斑变性发病机制的新工具
- 批准号:
10579904 - 财政年份:2020
- 资助金额:
$ 20.06万 - 项目类别: