Mutually Orthogonal Metabolic Probes for Multiplexed Imaging of de novo Phospholipid Biosynthesis
用于从头磷脂生物合成多重成像的相互正交代谢探针
基本信息
- 批准号:10263358
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAzidesBiological FactorsCell LineCell membraneCell modelCell physiologyCellsCellular biologyChemicalsChemistryCholineColorComprehensionCoupledCyclooctenesDevelopmentDiseaseEndoplasmic ReticulumEnzymesEthanolaminesEvaluationExhibitsFellowshipFluorescent DyesFoundationsGenetic DiseasesGoalsHomeostasisHumanImageImpairmentIn VitroIndividualKnock-outKnowledgeLabelLecithinLenz-Majewski syndromeLimb structureLipidsLiver FailureMammalian CellMembraneMembrane BiologyMetabolicMolecularMonitorMouse Cell LineMutationOrganismPathway interactionsPatientsPhosphatidylcholine BiosynthesisPhosphatidylethanolaminePhosphatidylserine SynthasePhosphatidylserinesPhospholipidsReactionRegulationReportingResearchResearch ProposalsRoleSaccharomyces cerevisiaeSpecificityTestingTherapeuticTimeValidationWorkYeastsbasecraniofacialcross reactivitydesignexperimental studyfluorophorefunctional groupgain of function mutationhuman diseaseimaging capabilitiesin vivoinsightlive cell imagingmultiplexed imagingmutantnovelresponsesmall moleculetargeted treatmenttool
项目摘要
PROJECT SUMMARY/ABSRACT
Mutations in enzymes responsible for phospholipid biosynthesis and remodeling have been identified as key
biological factors in a growing number of genetic disorders. For example, Lenz-Majewski syndrome, a disease
associated with craniofacial and limb abnormalities, and intellectual impairment, is characterized by gain of
function mutations in phosphatidylserine synthase 1 enzyme (PSS1) that results in the accumulation of
phostphatidylserine (PS) in the endoplasmic reticulum (ER). While it is well established that the biosynthesis of
PS is tightly coupled to that of phospholipids including phosphatidylcholine (PC) and phosphatidylethanolamine
(PE), the consequences that increased PS synthesis has on the biosynthesis and membrane content of PC and
PE in patients with Lenz-Majewski syndrome are not known. This lack of knowledge limits our understanding of
the disease since PC and PE account for over half of the cell's total phospholipids. In addition, changes in the
relative concentrations of these lipids, especially in response to perturbations in the cellular content of other
phospholipids, are associate with a variety of human diseases including liver failure. The over-arching goal of
this proposal is to unveil the causal relationship between the biosynthesis and cellular content of PC and PE, in
real-time with live cells, when PS biosynthesis is disturbed in Lenz-Majewski syndrome. Bioorthogonal choline
and ethanolamine probes will be incorporated into PC and PE respectively through their de novo biosynthetic
pathways to enable multiplexed, live-cell imaging of these phospholipids after tagging with a fluorescent dye.
The proposed research is crafted into two Specific Aims to achieve this research goal. Specific Aim 1 focuses
on the synthesis of bioorthogonal choline and ethanolamine probes, and evaluation of labeling efficiency and
specificity of these probes for PC and PE respectively. Wild-type and knockout Saccharomyces cerevisiae yeast
strains will elucidate the enzymatic incorporation (i.e. Kennedy biosynthesis) of these probes and the optimized
labeling strategy will be transitioned into mammalian cells. Specific Aim 2 is designed to demonstrate the
multiplexed imaging capabilities of the mutually orthogonal PC and PE probes in mammalian cell lines and in
cellular models of Lenz-Majewski syndrome. Flux through the Kennedy biosynthetic pathway of PC and PE, and
changes in membrane content of these phospholipids, in response to uncontrolled PS synthesis will provide a
complete picture on changes in cell physiology during this disease. Completion of the research proposed in this
fellowship will have a broad impact in cell and membrane biology, providing novel tools to visualize perturbations
in local lipid composition and study the effects of these changes on cellular function in real-time. Specifically, this
work provides the framework for the characterization of PC and PE biosynthesis in an ever-growing class of
diseases characterized by mutations in enzymes associates with phospholipid biosynthesis.
项目摘要/弃权
负责磷脂生物合成和重塑的酶的突变已被确定为钥匙
越来越多的遗传疾病中的生物因素。例如,Lenz-Majewski综合征,一种疾病
与颅面和肢体异常以及智力障碍相关的特征是
磷脂酰丝氨酸合酶1酶(PSS1)中的功能突变,导致积累
内质网中(ER)中的苯丙酰丝氨酸(PS)。虽然可以很好地确定
PS紧密耦合到包括磷脂酰胆碱(PC)和磷脂酰乙醇胺在内的磷脂的偶联
(PE),PS合成增加对PC和PC的生物合成和膜含量的后果
Lenz-Majewski综合征患者的PE尚不清楚。缺乏知识限制了我们对
由于PC和PE以来,该疾病占细胞总磷脂的一半以上。另外,变化
这些脂质的相对浓度,尤其是针对其他细胞含量的扰动
磷脂与包括肝衰竭在内的多种人类疾病有关。总体目标的目标
该建议是揭示PC和PE的生物合成与细胞含量之间的因果关系
当Lenz-Majewski综合征干扰PS生物合成时,实时使用活细胞。生物正交胆碱
和乙醇胺探针将通过新生生物合成分别纳入PC和PE
用荧光染料在标记后,可以对这些磷脂的多重生活成像进行多路复用的途径。
拟议的研究被制定为实现这一研究目标的两个具体目的。特定目标1重点
关于生物正交胆碱和乙醇胺探针的合成,以及标记效率的评估
这些探针分别对PC和PE的特异性。野生型和淘汰葡萄糖酿酒酵母酵母
菌株将阐明这些探针的酶促掺入(即肯尼迪生物合成)和优化
标记策略将过渡到哺乳动物细胞。特定目标2旨在证明
哺乳动物细胞系中相互正交PC和PE探针的多重成像功能以及
Lenz-Majewski综合征的细胞模型。通过PC和PE的肯尼迪生物合成途径的通量,以及
这些磷脂的膜含量的变化,响应不受控制的PS合成将提供
完整了解这种疾病期间细胞生理的变化。在此提出的研究完成
奖学金将对细胞和膜生物学产生广泛的影响,提供新颖的工具来可视化扰动
在局部脂质组成和研究这些变化对实时细胞功能的影响。具体来说,这是
工作为在不断增长的类别中表征PC和PE生物合成的框架
以与磷脂生物合成相关的酶突变为特征的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brittany Marie White-Mathieu其他文献
Brittany Marie White-Mathieu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brittany Marie White-Mathieu', 18)}}的其他基金
Mutually Orthogonal Metabolic Probes for Multiplexed Imaging of de novo Phospholipid Biosynthesis
用于从头磷脂生物合成多重成像的相互正交代谢探针
- 批准号:
10086319 - 财政年份:2019
- 资助金额:
$ 6.64万 - 项目类别:
相似国自然基金
线粒体mRNA甲基化修饰调控神经元线粒体能量代谢的机制研究
- 批准号:32300796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
- 批准号:82301707
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以22q11.21重复变异的孤独症谱系障碍病人为模型研究THAP7调节血清素代谢的分子机制
- 批准号:32300488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
相似海外基金
Mutually Orthogonal Metabolic Probes for Multiplexed Imaging of de novo Phospholipid Biosynthesis
用于从头磷脂生物合成多重成像的相互正交代谢探针
- 批准号:
10086319 - 财政年份:2019
- 资助金额:
$ 6.64万 - 项目类别:
Understanding How Thiolates Promote Dioxygen Chemistry
了解硫醇盐如何促进双氧化学
- 批准号:
10594503 - 财政年份:2018
- 资助金额:
$ 6.64万 - 项目类别:
Understanding How Thiolates Promote Dioxygen Chemistry
了解硫醇盐如何促进双氧化学
- 批准号:
10444825 - 财政年份:2018
- 资助金额:
$ 6.64万 - 项目类别:
Chemical Tools for the Investigation and Manipulation of Protein Glycosylation
用于研究和操作蛋白质糖基化的化学工具
- 批准号:
10444494 - 财政年份:2017
- 资助金额:
$ 6.64万 - 项目类别:
Chemical Tools for the Investigation and Manipulation of Protein Glycosylation
用于研究和操作蛋白质糖基化的化学工具
- 批准号:
10621302 - 财政年份:2017
- 资助金额:
$ 6.64万 - 项目类别: