Statistical modeling of cross-sample variation and learning of latent structures in microbiome sequencing data
跨样本变异的统计建模和微生物组测序数据中潜在结构的学习
基本信息
- 批准号:10263932
- 负责人:
- 金额:$ 34.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Acute DiseaseAgingAlgorithmsBig DataCancer PatientCharacteristicsChronic DiseaseComplexComputer softwareDataData SetDevelopmentDiseaseEffectivenessEquilibriumExperimental DesignsGeneral PopulationGoalsHealthHematopoietic Stem Cell TransplantationHeterogeneityHuman bodyImmune responseInflammatory Bowel DiseasesInterventionLeadLearningLinkLongitudinal StudiesMalignant NeoplasmsMental DepressionMethodologyMethodsMicrobeModelingModernizationNon-Insulin-Dependent Diabetes MellitusObesityOutcomePatientsPhylogenetic AnalysisPlayProcessResearchRoleSamplingStatistical Data InterpretationStatistical ModelsStructureSurveysTestingTimeUrinary tract infectionVariantWomanbacterial communitydata sharingdesignflexibilityhigh dimensionalityhuman microbiotaimprovedmicrobialmicrobial communitymicrobiomemicrobiome analysismicrobiome compositionmicrobiome researchmicrobiome sequencingmicrobiotaopen sourcepersonalized interventionsoftware developmenttooluser-friendly
项目摘要
PROJECT ABSTRACT
The bacterial communities (microbiota) residing on the human body have been linked to a variety of acute and
chronic diseases and conditions, such as obesity, inflammatory bowel disorders, Type 2 diabetes, depression,
and urinary tract infections (UTIs), as well as to the host’s response to a variety of treatments and health
interventions for these diseases and conditions. As the critical role played by the microbiota has become
increasingly recognized, microbiome sequencing data sets are now routinely generated under ever more
sophisticated experimental designs and survey strategies. While such data share many common features and
challenges of modern big data, such as high-dimensionality and sparsity, they also possess characteristics
peculiar to the microbiota, including (i) the explicit and latent contextual relationships among the bacterial species,
such as their evolutionary and functional relationships; and (ii) the substantial heterogeneity across samples and
complex structure in the sample-to-sample variation. Effective analysis of modern microbiome studies calls for
new statistical methodology that incorporates these important characteristics in the data generative mechanism.
This project’s objective is to develop a suite of statistical models, methods, algorithms, and software that meet
this urgent need. An initial aim is to develop a multi-scale probabilistic framework for modeling microbiome
compositions that effectively characterizes the high dimensionality, sparsity, and substantial cross-sample
variation in microbiome sequencing data, and incorporates a variety of common experimental designs, such as
covariates, batch effects, and multiple time points, while striking a balance in flexibility, analytical parsimony, and
computational tractability. An additional focus is to develop latent variable models for microbiome compositional
data for the purpose of identifying latent structures such as sample clusters and species subcommunities. A final
aim is to produce user-friendly, open-source software that implements all of the proposed methods for the
analysis of microbiome sequencing data. All of the models and methods developed are informed by two on-
going collaborative projects of PI Ma and his team. One is on the identification of microbial communities
associated with UTIs in aging women, and the other on the study of longitudinal changes in the microbiome of
cancer patients undergoing hematopoietic stem cell transplantation. These studies will serve as testbeds for all
development. The models, methods, and software developed will not only result in better prediction of the health
outcomes in these and other microbiome studies but also help decipher the roles of microbiome in various
diseases and biomedical processes, with the ultimate goal of personalized interventions on the microbiome
compositions of patients to lead to improved health.
项目摘要
驻留在人体上的细菌群落(微生物群)与多种急性和
慢性疾病和疾病,例如肥胖,炎症性肠病,2型糖尿病,抑郁症,
和尿路感染(UTI),以及宿主对各种治疗和健康的反应
这些疾病和状况的干预措施。随着菌群的关键作用已成为
越来越认识的微生物组测序数据集现在常规生成更多
软化实验设计和调查策略。这些数据共享许多共同的功能,并且
现代大数据的挑战,例如高维和稀疏性,它们也具有特征
微生物群特有
例如他们的进化和功能关系; (ii)样品之间的实质异质性和
样品对样本变化中的复杂结构。现代微生物组研究的有效分析要求
新的统计方法将这些重要特征纳入数据通用机制。
该项目的目标是开发一套统计模型,方法,算法和软件
这种迫切的需求。最初的目的是开发一个多尺度的概率框架来建模微生物组
有效地表征高维度,稀疏性和实质跨样本的组成
微生物组测序数据的变化,并结合了各种常见的实验设计,例如
协变量,批处理效应和多个时间点,同时达到灵活性,分析简约和
计算障碍。另一个重点是开发微生物组组成的潜在变量模型
数据是为了识别潜在结构,例如样本簇和物种亚社区。决赛
目的是生产用户友好的开源软件,以实现所有提出的方法
分析微生物组测序数据。所有开发的模型和方法均由两个on-
Pi Ma及其团队的合作项目。一个关于微生物群落的识别
与衰老妇女的UTI相关,另一个与研究的研究
接受造血干细胞移植的癌症患者。这些研究将作为所有人的测试床
发展。开发的模型,方法和软件不仅会更好地预测健康
这些和其他微生物组研究的结果,但也有助于破译微生物组在各种
疾病和生物医学过程,其最终目标是对微生物组的个性化干预措施
患者的组成可改善健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Ma其他文献
Effect of capital constraints on the risk preference behavior of commercial banks
资本约束对商业银行风险偏好行为的影响
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:8.2
- 作者:
Li Ma;Junxun Dai;Xian Huang - 通讯作者:
Xian Huang
Li Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Ma', 18)}}的其他基金
Targeting the LIFR-LCN2 pathway to improve liver cancer therapy
靶向 LIFR-LCN2 通路改善肝癌治疗
- 批准号:
10583188 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
Statistical modeling of cross-sample variation and learning of latent structures in microbiome sequencing data
跨样本变异的统计建模和微生物组测序数据中潜在结构的学习
- 批准号:
10688000 - 财政年份:2020
- 资助金额:
$ 34.69万 - 项目类别:
Statistical modeling of cross-sample variation and learning of latent structures in microbiome sequencing data
跨样本变异的统计建模和微生物组测序数据中潜在结构的学习
- 批准号:
10468838 - 财政年份:2020
- 资助金额:
$ 34.69万 - 项目类别:
Epithelial-mesenchymal transition regulators in radioresistance and DNA repair
放射抗性和 DNA 修复中的上皮-间质转化调节因子
- 批准号:
9095257 - 财政年份:2014
- 资助金额:
$ 34.69万 - 项目类别:
Epithelial-mesenchymal transition regulators in radioresistance and DNA repair
放射抗性和 DNA 修复中的上皮-间质转化调节因子
- 批准号:
8751065 - 财政年份:2014
- 资助金额:
$ 34.69万 - 项目类别:
Regulation of metastasis and epithelial-mesenchymal transition by microRNAs
microRNA对转移和上皮间质转化的调节
- 批准号:
8511590 - 财政年份:2012
- 资助金额:
$ 34.69万 - 项目类别:
Non-coding RNA functions in tumor metastasis
非编码RNA在肿瘤转移中的作用
- 批准号:
10311482 - 财政年份:2012
- 资助金额:
$ 34.69万 - 项目类别:
Non-coding RNA functions in tumor metastasis
非编码RNA在肿瘤转移中的作用
- 批准号:
10531262 - 财政年份:2012
- 资助金额:
$ 34.69万 - 项目类别:
Regulation of metastasis and epithelial-mesenchymal transition by microRNAs
microRNA对转移和上皮间质转化的调节
- 批准号:
8676742 - 财政年份:2012
- 资助金额:
$ 34.69万 - 项目类别:
Regulation of metastasis and epithelial-mesenchymal transition by microRNAs
microRNA对转移和上皮间质转化的调节
- 批准号:
8851531 - 财政年份:2012
- 资助金额:
$ 34.69万 - 项目类别:
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Plans4Care: Personalized Dementia Care On-Demand
Plans4Care:按需个性化痴呆症护理
- 批准号:
10758864 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
Investigating Disparities in Home Health Access and Quality for Medicare Beneficiaries with Alzheimer's Disease and Related Dementias Following Recent Payment System Revisions
调查最近支付系统修订后患有阿尔茨海默病和相关痴呆症的医疗保险受益人在家庭健康获取和质量方面的差异
- 批准号:
10724842 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
Neural Operator Learning to Predict Aneurysmal Growth and Outcomes
神经算子学习预测动脉瘤的生长和结果
- 批准号:
10636358 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
Risk Stratification for COPD Exacerbations with CT Analysis and Multidimensional Trajectory Subtyping
通过 CT 分析和多维轨迹分型对 COPD 恶化进行风险分层
- 批准号:
10658547 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
New EHR-based multimorbidity index for diverse populations across the lifespan: development, validation, and application
针对不同人群整个生命周期的新的基于 EHR 的多病指数:开发、验证和应用
- 批准号:
10720597 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别: