Multiscale computational frameworks for integrating large-scale cortical dynamics, connectivity, and behavior
用于集成大规模皮层动力学、连接性和行为的多尺度计算框架
基本信息
- 批准号:10263628
- 负责人:
- 金额:$ 62.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-01-15
- 项目状态:已结题
- 来源:
- 关键词:AddressAnatomyAnimal BehaviorAnimalsAreaBehaviorBehavioralBehavioral ModelBiologicalBiological ModelsBrainBrain regionCalciumCognitiveComplexComputer ModelsComputing MethodologiesDataData SetDecision MakingDimensionsDorsalFreedomGoalsImageLinkMapsMeasurementMental disordersMethodsMicroscopicModalityModelingModernizationMovementMusNamesNervous system structureNeural Network SimulationNeuronsNeurosciencesOutputPatternPerceptionProblem SolvingPyramidal CellsResearchResolutionStructureSystems TheoryTechniquesTestinganalytical toolbasecell typecognitive functioncomputer frameworkdesigndynamic systemexperimental studyhigh dimensionalityinsightlarge scale datamathematical modelmulti-scale modelingmultidimensional dataneural circuitneural patterningneurotechnologyneurotransmissionnoveloutcome predictionpredictive modelingrecurrent neural networkrelating to nervous systemtheories
项目摘要
Project Summary/Abstract
A central problem in neuroscience is to understand how activity arises from neural circuits to drive animal
behaviors. Solving this problem requires integrating information from multiple experimental modalities and
organization levels of the nervous system. While modern neurotechnologies are generating high-resolution maps
of the brain-wide neural activity and anatomical connectivity, novel theoretical frameworks are urgently needed
to realize the full potential of these datasets. Most state-of-the-art methods for analyzing high-dimensional data
are based on detecting correlations in neural activity and do not provide links to the underlying anatomical
connectivity and circuit mechanisms. As a result, conclusions derived with these methods rarely generalize
across different behaviors and are hard to validate in perturbation experiments. In contrast, mechanistic theories,
which combine connectivity, activity, and function, have been highly successful in understanding function of small
neural circuits. Conditions under which insights from small circuits scale to large distributed circuits have not
been explored. Mechanistic theories informed by multiple data modalities are critically missing to guide
experiments probing global neural dynamics on the brain-wide scale.
The main goal of this proposal is to develop computational frameworks for modeling global neural dynamics,
which utilize anatomical connectivity and predict rich behavioral outputs on single trials. Our project will address
two complementary aims. First, we will take advantage of recently available datasets of high-resolution brain-
wide neural activity and anatomical connectivity to construct a multiscale model of functional dynamics across
the mouse cortex. Integrating measurements across multiple scales, from mesoscopic to near-cellular resolution,
we aim to reveal the effective degrees of freedom at each scale, which constrain global neural dynamics and
drive rich patterns of behavior. Second, we will leverage techniques from dynamical systems theory and artificial
recurrent neural networks to develop circuit reduction methods that infer interpretable low-dimensional circuit
mechanisms of cognitive computations from high-dimensional neural activity data. Rather than merely detecting
correlations, our method infers the structural connectivity of an equivalent low-dimensional circuit that fits
projections of high-dimensional neural activity data and implements the behavioral task. We will apply this
method to multi-area neural activity recordings from behaving animals to reveal distributed circuit mechanisms
of context-dependent decision making. The computational frameworks developed in this proposal can be
validated in perturbation experiments and extended to other nervous systems and behaviors.
项目摘要/摘要
神经科学中的一个核心问题是了解活动是如何由神经回路引起的,以驱动动物
行为。解决此问题需要整合来自多种实验方式的信息,并且
神经系统的组织水平。而现代神经技术正在生成高分辨率地图
在脑范围的神经活动和解剖连通性中,迫切需要新的理论框架
实现这些数据集的全部潜力。大多数用于分析高维数据的最先进方法
基于检测神经活动中的相关性,并且不提供与潜在解剖学的链接
连通性和电路机制。结果,以这些方法得出的结论很少概括
跨不同行为,在扰动实验中很难验证。相反,机械理论,
结合了连接性,活动和功能,在理解小的功能方面已经非常成功
神经回路。从小电路尺度到大型分布式电路的洞察力尚未洞悉的条件尚未
被探索了。通过多种数据模式告知的机械理论严重缺少
实验探测全球神经动力学的大脑量表。
该建议的主要目标是开发用于建模全球神经动态的计算框架,
它利用解剖连通性并预测单个试验中的丰富行为输出。我们的项目将解决
两个互补的目标。首先,我们将利用最近可用的高分辨率大脑的数据集
广泛的神经活动和解剖连接性,以构建跨功能动力学的多尺度模型
鼠标皮层。从介绍到近细胞分辨率的多个尺度跨越多个尺度的测量值,
我们旨在揭示每个规模上有效的自由度,这限制了全球神经动态和
推动丰富的行为模式。其次,我们将利用动力学系统理论和人造技术利用技术
复发性神经网络开发降低电路方法,以推断可解释的低维电路
高维神经活动数据的认知计算机制。而不是仅检测
相关性,我们的方法渗透了拟合的等效低维电路的结构连通性
高维神经活动数据的预测并实施行为任务。我们将应用此
从行为动物的多面积神经活动记录到揭示分布式电路机制的方法
与上下文有关的决策。本提案中开发的计算框架可以是
在扰动实验中进行了验证,并扩展到其他神经系统和行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tatiana Engel其他文献
Tatiana Engel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tatiana Engel', 18)}}的其他基金
Multiscale computational frameworks for integrating large-scale cortical dynamics, connectivity, and behavior
用于集成大规模皮层动力学、连接性和行为的多尺度计算框架
- 批准号:
10840682 - 财政年份:2023
- 资助金额:
$ 62.14万 - 项目类别:
Discovering dynamic computations from large-scale neural activity recordings
从大规模神经活动记录中发现动态计算
- 批准号:
10002240 - 财政年份:2018
- 资助金额:
$ 62.14万 - 项目类别:
Discovering dynamic computations from large-scale neural activity recordings
从大规模神经活动记录中发现动态计算
- 批准号:
9789277 - 财政年份:2018
- 资助金额:
$ 62.14万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 62.14万 - 项目类别:
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 62.14万 - 项目类别:
Implications of Prefrontal Cortex Development for Adolescent Reward Seeking Behavior
前额皮质发育对青少年奖励寻求行为的影响
- 批准号:
10739548 - 财政年份:2023
- 资助金额:
$ 62.14万 - 项目类别:
Neural activity and circuitry-mediated hippocampal stress responses
神经活动和电路介导的海马应激反应
- 批准号:
10903002 - 财政年份:2023
- 资助金额:
$ 62.14万 - 项目类别:
PPARdelta receptors and alcohol use phenotypes
PPARδ 受体和饮酒表型
- 批准号:
10682348 - 财政年份:2023
- 资助金额:
$ 62.14万 - 项目类别: