A whole-animal small molecule screen to identify and characterize modifiers of Apolipoprotein B
用于识别和表征载脂蛋白 B 修饰物的全动物小分子筛选
基本信息
- 批准号:10261421
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-03 至 2023-09-02
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAnimal ModelAnimalsApolipoproteins BBindingBioinformaticsBiologicalBiological AssayBiological MarkersBiologyBlood CirculationCardiovascular DiseasesCellsCholesterolChronicCollaborationsComplexDataDietary FatsDisease ProgressionDoseDrug ScreeningEnvironmentEtiologyFRAP1 geneFemaleFoodFutureGene ExpressionHomeostasisHumanImaging TechniquesInflammationInnovative TherapyInstitutesInsulin ResistanceIntentionIntestinesLarvaLibrariesLipidsLipoproteinsLiverMaleatesMeasuresMediatingMetabolic DiseasesMetabolic dysfunctionMetabolic syndromeMetabolismModelingNon-Insulin-Dependent Diabetes MellitusOpticsOther GeneticsPathway interactionsPeripheralPharmacologic SubstancePhenotypePhysiologyPlasmaProductionRegulationReporterResearchRisk FactorsSeriesSerotoninSerotonin AntagonistsSourceSyndromeSystemTestingTherapeuticTissuesTransgenic OrganismsTriglyceridesZebrafishbasecareerdesigndrug repurposingendoplasmic reticulum stressexperimental studyhigh throughput screeninghigh-throughput drug screeninghormonal signalsimprovedimproved outcomein vivoinhibitor/antagonistinsightinterestlipid metabolismlipid transportmicrosomal triglyceride transfer proteinnanoluciferasenon-alcoholic fatty liver diseasenovelnovel therapeuticsreceptorscreeningserotonin receptorside effectsmall moleculesuccesstranscriptome sequencing
项目摘要
PROJECT SUMMARY
Metabolic syndrome, encompassing type 2 diabetes, non-alcoholic fatty-liver disease, and cardiovascular
disease, affects more than one billion people worldwide. While its etiology is complex, the best biological marker
of metabolic syndrome is increased levels of apolipoprotein B (ApoB)-containing lipoproteins (B-lps). B-lps
transport triglycerides and cholesterol through the plasma to peripheral tissues, and excess plasma B-lps are
causative to metabolic syndrome. A single ApoB molecule decorates each B-lp and is essential for its function.
However, the cellular mechanisms that ultimately regulate ApoB and B-lp production, secretion, transport, and
degradation remains to be fully defined. The proposed studies aim to identify new molecules that alter B-lp
physiology with the hope of not only generating new therapeutics but to elucidate new cell biological mechanisms
of ApoB regulation. Human B-lp biology is remarkably conserved in the zebrafish. Further, zebrafish produce
large numbers of progeny, larvae are optically transparent, and larvae do not require an exogenous food source.
Thus, the zebrafish is the ideal model to identify novel mechanisms of ApoB modulation. Therefore, the Farber
lab generated an in vivo chemiluminescent reporter of ApoB that does not disrupt ApoB function. Thus, I
hypothesize that I can identify novel drugs that modulate ApoB regulation, turnover, and function to rectify
metabolic dysfunction using this whole-animal reporter of ApoB. I have developed a high-throughput assay to
screen chemiluminescence from whole zebrafish. Each compound that reduces ApoB from a drug repurposing
library will be further validated by several assays measuring ApoB and B-lps production, size, and turnover. I will
also evaluate the effects of each compound on whole-animal physiology. My screening efforts have identified 25
ApoB-lowering compounds. One compound, pimethixene maleate, specifically reduces ApoB levels in a dose-
dependent manner. Prior research suggests pimethixene is a serotonin receptor antagonist. Studies suggest
that serotonin influence B-lps levels through regulation of the mammalian Target of Rapamycin (mTOR). Thus,
I hypothesize that pimethixene-dependent ApoB reduction is mediated by 5-HT2 receptor antagonism. I will
determine whether pimethixene directly alters this pathway. Further, I will examine whether this compound
improves several risk factors associated with metabolic disease using a series of established transgenic reporter
lines and bioinformatic approaches. Ultimately, this research aims not only to identify novel ApoB-modulating
therapeutics that would improve outcomes of metabolic disease but would also provide fundamental insights into
the regulation and function of ApoB. Together, the research environment of the Farber lab and the Carnegie
Institute are ideal for the success of this project and my success in the future as I grow towards an independent
career in metabolism research.
项目概要
代谢综合征,包括 2 型糖尿病、非酒精性脂肪肝和心血管疾病
疾病,影响着全世界超过十亿人。虽然其病因复杂,但最好的生物标志物
代谢综合征的一个重要原因是载脂蛋白 B (ApoB) 的脂蛋白 (B-lps) 水平升高。 B-LPS
通过血浆将甘油三酯和胆固醇转运至外周组织,过量的血浆 B-lps 被
代谢综合征的病因。每个 B-lp 上都有一个 ApoB 分子,并且对其功能至关重要。
然而,最终调节 ApoB 和 B-lp 产生、分泌、运输和
退化仍有待完全定义。拟议的研究旨在鉴定改变 B-lp 的新分子
生理学不仅希望产生新的治疗方法,而且能够阐明新的细胞生物学机制
ApoB 调节。人类 B-lp 生物学在斑马鱼中非常保守。此外,斑马鱼产生
大量后代,幼虫光学透明,并且幼虫不需要外源食物源。
因此,斑马鱼是识别 ApoB 调节新机制的理想模型。因此,法伯
实验室生成了 ApoB 的体内化学发光报告基因,不会破坏 ApoB 功能。于是,我
假设我可以找到调节 ApoB 调节、周转和纠正功能的新药物
使用 ApoB 的整个动物报告基因进行代谢功能障碍。我开发了一种高通量检测方法
筛选整个斑马鱼的化学发光。每种通过药物再利用而减少 ApoB 的化合物
文库将通过测量 ApoB 和 B-lps 产量、大小和周转率的多项测定进一步验证。我会
还评估每种化合物对整个动物生理学的影响。我的筛选工作已确定 25
降低 ApoB 的化合物。一种化合物马来酸哌美辛在一定剂量下可特异性降低 ApoB 水平
依赖方式。先前的研究表明吡美噻烯是一种血清素受体拮抗剂。研究表明
血清素通过调节哺乳动物雷帕霉素靶点 (mTOR) 影响 B-lps 水平。因此,
我推测吡美噻烯依赖性 ApoB 减少是由 5-HT2 受体拮抗作用介导的。我会
确定吡美噻烯是否直接改变该途径。此外,我将检查该化合物是否
使用一系列已建立的转基因报告基因改善与代谢疾病相关的几个危险因素
线和生物信息学方法。最终,这项研究的目的不仅是确定新型 ApoB 调节剂
可以改善代谢疾病的治疗结果,但也可以提供基本见解
ApoB 的调节和功能。法伯实验室和卡内基实验室的研究环境一起
学院对于这个项目的成功和我未来的成功是理想的,因为我成长为一个独立的人
从事新陈代谢研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kelpsch其他文献
Daniel Kelpsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kelpsch', 18)}}的其他基金
A whole-animal small molecule screen to identify and characterize modifiers of Apolipoprotein B
用于识别和表征载脂蛋白 B 修饰物的全动物小分子筛选
- 批准号:
10460567 - 财政年份:2020
- 资助金额:
$ 6.64万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
The role of SH2B3 in regulating CD8 T cells in Type 1 Diabetes
SH2B3 在 1 型糖尿病中调节 CD8 T 细胞的作用
- 批准号:
10574346 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别: