CRCNS: Inferring reference points from OFC population dynamics
CRCNS:从 OFC 人口动态推断参考点
基本信息
- 批准号:10261540
- 负责人:
- 金额:$ 33.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-11 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAnimalsArchitectureAutomobile DrivingBehaviorBehavioralBehavioral ModelBehavioral ParadigmBiological ModelsBipolar DisorderBirdsBrainCapuchin MonkeyChoice BehaviorChronicCognitiveCollaborationsComplexConsequentialismDataDecision MakingDecision TheoryDependenceDimensionsDiseaseFutureHealthHumanImpairmentImplantIndividualIndividual DifferencesInsuranceKnowledgeMachine LearningMammalsMental disordersModelingModernizationMonitorNeuronsOccupationsOutcomePopulationPopulation DynamicsProcessRattusRecording of previous eventsRetirementRewardsSavingsSchizophreniaSiliconStructureTechniquesTestingTrainingWagesWaterWorkbasebehavior measurementbehavioral economicsdynamic systemexpectationexperienceexperimental studyimprovedneural circuitneuropsychiatric disordernovelpreservationrecurrent neural networkrelating to nervous systemreward processingtool
项目摘要
A key computation that all mammals perform is determining the value of different outcomes. People and
animal models evaluate outcomes as gains or losses relative to an internal reference point, likely
reflecting their experience-based expectations. For example, if someone is told they will receive a
particular salary at a new job, but when they start, they find that the salary is substantially less, they will
view that salary (which is a net increase in wealth) as a loss relative to their reference point. Reference
dependence is a consequential, ubiquitous phenomenon, driving decisions about insurance, financial
products, labor, and retirement savings. The proposed work seeks to uncover how large populations of
neurons represent a cognitive variable –the reference point- during value-based decision-making. This
work involves complementary, synergistic interactions between experimentalists and theorists in the labs
of Dr. Christine Constantinople and Dr. Cristina Savin, respectively.
This proposal will develop a novel behavioral paradigm for studying reference dependence in rats,
enabling application of powerful tools to monitor large-scale neural dynamics. High-throughput behavioral
training will generate dozens of trained subjects for experiments in parallel. We will also develop a
behavioral model to quantify key aspects of rats' behavior, including individual differences in behavior
across animals (Aim 1). We will use new silicon probes with high channel counts (“Neuropixels” probes) to
record from populations of neurons in dozens of rats during behavior. Recordings will be obtained from
the orbitofrontal cortex (OFC), a key brain structure implicated in value-based decision-making. We will
develop novel latent dynamics models that will infer the reference point directly from populations of
simultaneously recorded neurons in OFC, without any knowledge of the task or rats' behavior. This model
will also be able to identify aspects of neural dynamics that are common across dozens of rats, and
aspects that are variable across animals, reflecting individual differences in behavior (Aim 2). Finally, we
will use complementary, state-of-the-art machine-learning techniques to train recurrent neural networks
(RNNs) on our behavioral and neural data. This approach will generate concrete hypotheses about the
neural circuit architectures performing reference-dependent subjective valuation in our task (Aim 3).
所有哺乳动物执行的关键计算是确定不同结果的值。人们和
动物模型评估结果是相对于内部参考点的收益或损失,可能
反映他们基于经验的期望。例如,如果有人告诉有人会收到
在新工作中特别薪水,但是当他们开始时,他们发现薪水要少得多,他们将
认为薪水(这是财富的净增加)是相对于其参考点的损失。参考
依赖性是一种随之而来的普遍现象,推动有关保险,财务的决定
产品,人工和退休储蓄。拟议的工作旨在发现大量人口
神经元代表认知变量 - 基于价值决策期间的参考点。这
工作涉及实验者与实验室理论家之间的完整性,协同互动
克里斯汀·君士坦丁(Christine Constantinople)和克里斯蒂娜·萨维(Cristina Savin)博士的作品。
该建议将开发出一种新的行为范例,用于研究大鼠的参考依赖性,
实现强大的工具来监视大规模的神经动力学。高通量行为
培训将产生数十名训练有素的受试者,以并联实验。我们还将开发一个
量化大鼠行为关键方面的行为模型,包括行为的个体差异
跨动物(目标1)。我们将使用具有高频道计数的新硅问题(“神经偶像”问题)
在行为过程中,来自数十只大鼠的神经元种群的记录。录音将从
Orbitrontal Cortex(OFC),这是一种在基于价值的决策中实现的关键大脑结构。我们将
开发新型潜在动力学模型,这些模型将直接从人群中推断出参考点
类似地记录在OFC中的神经元,而没有任何对任务或大鼠行为的了解。这个模型
还将能够识别几十只大鼠和
各种动物变化的方面,反映了行为的个体差异(AIM 2)。最后,我们
将使用完整的,最先进的机器学习技术来训练经常性的神经网络
(RNN)关于我们的行为和神经数据。这种方法将产生有关该方法的具体假设
神经电路体系结构在我们的任务中执行参考依赖性主观值(AIM 3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Marie Constantinople其他文献
Christine Marie Constantinople的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine Marie Constantinople', 18)}}的其他基金
Neural circuit mechanisms of arithmetic for economic decision-making
经济决策算法的神经回路机制
- 批准号:
10002804 - 财政年份:2020
- 资助金额:
$ 33.72万 - 项目类别:
CRCNS: Inferring reference points from OFC population dynamics
CRCNS:从 OFC 人口动态推断参考点
- 批准号:
10675077 - 财政年份:2020
- 资助金额:
$ 33.72万 - 项目类别:
CRCNS: Inferring reference points from OFC population dynamics
CRCNS:从 OFC 人口动态推断参考点
- 批准号:
10462618 - 财政年份:2020
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9894590 - 财政年份:2019
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
10064970 - 财政年份:2019
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9816021 - 财政年份:2019
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9353881 - 财政年份:2016
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9224202 - 财政年份:2016
- 资助金额:
$ 33.72万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
- 批准号:
10556087 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
- 批准号:
10556475 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别: