Large-scale data integration and harmonization to accurately predict sites facing future health-based drinking water crises
大规模数据整合和协调,以准确预测未来面临健康饮用水危机的地点
基本信息
- 批准号:10253600
- 负责人:
- 金额:$ 25.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project summary: Up to 45 million people per year in the U.S. are directly impacted by health-based drinking
water problems. This leads to at least 16 million cases of acute gastroenteritis directly linked to pollution at
community water systems, with tens of millions more directly impacted by chemical and organic pollutants.
Impacts are further exacerbated in locations dealing with water scarcity, in under-served populations, and
within other vulnerable populations already suffering from health disparities. Many of these water problems are
the direct result of managerial negligence, inconsistent monitoring, and a lack of the ability to anticipate where
problems may arise next. While the reasons for drinking water problems are complex, if we could anticipate
where health-based drinking water problems were to occur in the future, it could have an immediate
and positive impact on tens of millions of Americans annually. Interestingly, extensive data about water
quality and the performance of municipal water systems already exists in large, disparate databases. These
databases are largely ignored and, when used, are typically used only anecdotally and retroactively.
Preliminary evidence suggests that these existing databases, which contain histories of administrative
violations and sub-threshold water-quality results, can be mined to accurately predict future drinking water
crises. The Superior Statistical Research R&D team is an internationally recognized group of water experts
with cross-cutting expertise in statistics/data analysis/modelling/computing, water-quality monitoring of
biological and chemical contaminants, and the ability to clearly and compellingly translate water-quality and
health information to actionable steps for individuals, organizations and communities. In this Phase I project,
we will show that it is possible to predict water-related, health-based problem areas utilizing already collected,
historical data on water quality and municipal water system performance. We will begin by harmonizing the
disparate water quality and municipal water system performance in two different states (Michigan and Iowa).
We will then utilize machine-learning techniques to predict health-based violation histories and will evaluate our
methods by comparing predicted violations to actual health-based violations in the previous 5 years. Finally,
we will identify at least 10 municipalities determined by our algorithm to be at the highest risk for future health-
based water problems and will do systematic sampling to confirm our model-based predictions. We will then
demonstrate how making these predictions can be leveraged to profitability by exploring how our model-based
predictions can be presented to customers in an economical, usable form. Proof of our concept and profitability
models in two states (Phase I) will set us up for widespread (multi-state) database harmonization and
improvement of the proposed machine-learning/modelling effort in Phase II. With multi-state harmonized
datasets, identification of key data gaps in particular states/areas, and proven financial models, our technology
will ultimately lead to dramatic reductions in the number of health-based drinking water problems annually.
项目摘要:美国每年最多4500万人受到健康饮酒的影响
水问题。这导致至少1600万例急性胃炎直接与污染有关
社区供水系统,数以千计的直接受到化学和有机污染物的影响。
在处理水短缺,服务不足的人群和
在其他已经遭受健康差异的脆弱人群中。这些水问题中有许多是
管理疏忽,监控不一致以及缺乏预期在哪里的直接结果
接下来可能会出现问题。虽然饮用水问题的原因很复杂,但如果我们能预料到
如果将来发生基于健康的饮用水问题,它可能会立即发生
每年对数千万美国人的积极影响。有趣的是,有关水的大量数据
质量和市政供水系统的性能已经存在于大型,不同的数据库中。这些
数据库在很大程度上被忽略,并且使用时通常仅在轶事和追溯上使用。
初步证据表明,这些现有数据库,其中包含行政历史
可以开采违规和阈值下水质结果,以准确预测未来的饮用水
危机。高级统计研究研发团队是一群国际认可的水专家
凭借统计/数据分析/建模/计算方面的跨记录专业知识,水质监测
生物学和化学污染物,以及清晰而令人难以地翻译水品质和的能力
对个人,组织和社区的可行步骤的健康信息。在这个阶段的项目中,
我们将表明,可以预测利用已经收集的水相关的,基于健康的问题领域,
关于水质和市政水系统性能的历史数据。我们将首先协调
在两个不同州(密歇根州和爱荷华州)的不同水质和市政供水系统的表现。
然后,我们将利用机器学习技术来预测基于健康的违规历史,并将评估我们的
方法通过将预测的违规与过去5年的实际基于健康违规的行为进行比较。最后,
我们将确定至少10个由我们的算法确定的市政当局是未来健康的最高风险
基于水问题,并将进行系统抽样以确认我们的基于模型的预测。然后我们会
通过探索我们的模型如何利用如何利用这些预测来利用盈利能力
可以以经济的可用形式向客户提供预测。我们的概念和盈利能力的证明
在两个状态(第一阶段)的模型将使我们为广泛的(多状态)数据库协调和
在II阶段提出的机器学习/建模工作的改进。与多国家协调
数据集,特定州/地区的关键数据差距的识别以及经过验证的财务模型,我们的技术
最终将导致每年基于健康的饮用水问题的数量大大减少。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Nathan L Tintle的其他基金
Novel methods to improve the utility of genomics summary statistics
提高基因组学汇总统计效用的新方法
- 批准号:1064612510646125
- 财政年份:2023
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
Wastewater data integration and modelling to accurately predict community and organizational outbreaks due to viral pathogens
废水数据集成和建模,以准确预测病毒病原体引起的社区和组织爆发
- 批准号:1048153610481536
- 财政年份:2022
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
Wastewater data integration and modelling to accurately predict community and organizational outbreaks due to viral pathogens
废水数据集成和建模,以准确预测病毒病原体引起的社区和组织爆发
- 批准号:1076805310768053
- 财政年份:2022
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
Analyzing the behavior and interpreting the results of gene based tests of rare variant association
分析罕见变异关联的行为并解释基于基因的测试结果
- 批准号:90994749099474
- 财政年份:2012
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
Analyzing the behavior and interpreting the results of gene based tests of rare v
分析稀有病毒的行为并解释基于基因的测试结果
- 批准号:83676238367623
- 财政年份:2012
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
Analyzing the behavior and interpreting the results of gene based tests of rare variant association
分析罕见变异关联的行为并解释基于基因的测试结果
- 批准号:98132939813293
- 财政年份:2012
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
Evaluating the Cost Effectiveness of Alternative Sample Designs for Genetic Assoc
评估遗传关联替代样本设计的成本效益
- 批准号:78413427841342
- 财政年份:2009
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
Evaluating the Cost Effectiveness of Alternative Sample Designs for Genetic Assoc
评估遗传关联替代样本设计的成本效益
- 批准号:82644098264409
- 财政年份:2008
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
Evaluating the Cost Effectiveness of Alternative Sample Designs for Genetic Assoc
评估遗传关联替代样本设计的成本效益
- 批准号:73630677363067
- 财政年份:2008
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:1071071210710712
- 财政年份:2023
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:1071523810715238
- 财政年份:2023
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:1065108210651082
- 财政年份:2023
- 资助金额:$ 25.66万$ 25.66万
- 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:1082573710825737
- 财政年份:2023
- 资助金额:$ 25.66万$ 25.66万
- 项目类别: