Preclinical models, biomarkers, and therapy for myotonic dystrophy type 1
1 型强直性肌营养不良的临床前模型、生物标志物和治疗
基本信息
- 批准号:10237267
- 负责人:
- 金额:$ 49.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-30 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3&apos Untranslated RegionsAddressAdultAffectAllelesAnimal ModelAntisense OligonucleotidesBindingBiological MarkersC9ORF72CRISPR/Cas technologyCUG repeatCoupledCyclin-Dependent KinasesDNA Polymerase IIDNA-Directed RNA PolymeraseDefectDevelopmentDiseaseDrug ApprovalEventExerciseExonsExperimental ModelsFamilyFragile X SyndromeGenerationsGenesGenetic TranscriptionGenomeGoalsHealthHereditary DiseaseHexosesHistopathologyHumanIn VitroInsulinKnock-inKnock-in MouseLengthLigandsLinkMediatingMessenger RNAMethodsMicroRNAsMicrosatellite RepeatsModelingModificationMolecularMusMuscleMuscular DystrophiesMutationMyocardiumMyotoniaMyotonic DystrophyMyotonic dystrophy type 1Neuromuscular DiseasesOutcome MeasurePathogenesisPathogenicityPathway interactionsPatient observationPatientsPharmaceutical PreparationsPharmacodynamicsPhosphotransferasesPre-Clinical ModelProgram DevelopmentProteinsRNARNA ProcessingRNA SplicingRNA-Binding ProteinsRecovery of FunctionRegulationResearchResidual stateSafetySeriesSkeletal MuscleSmooth MuscleTestingTherapeuticTherapeutic InterventionToxic effectTranscription ElongationTranslationsTremor/Ataxia SyndromeUntranslated RNAanalogbasebiomarker developmentcombinatorialdesigndrug developmenteffective therapyfrontotemporal lobar dementia-amyotrophic lateral sclerosisfunctional disabilityimprovedin vivoinhibitor/antagonistknock-downloss of functionmRNA Precursormouse modelmuscular structuremutantnovelpreclinical studyrepairedsmall moleculetargeted treatmenttherapeutic developmenttherapeutic targettherapeutically effectivetherapy developmenttooltranscriptometranscriptome sequencingtreatment response
项目摘要
Myotonic dystrophy type 1 (DM1), which is caused by CTG expansions (CTGexp) in the 3' untranslated region
of the DMPK gene, has been used as a model for RNA-mediated disease mechanisms associated with other
microsatellite expansion diseases, including fragile X tremor/ataxia syndrome (FXTAS) and C9orf72
amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). In DM1, transcription of the
CTGexp mutation results in CUGexp RNAs that alter the developmental regulation of pre-mRNA processing
and mRNA localization events mediated by the MBNL and CELF families of RNA binding proteins. However,
additional cellular pathways, such as miRNA processing and repeat-associated non-AUG translation, have also
been implicated in DM1 pathogenesis. Most importantly, no effective therapies exist to treat this
neuromuscular disease. To address these deficiencies, this project is designed to generate more informative
mouse experimental models for DM1 to elucidate the relative contribution of each of the proposed
pathomechanisms and qualify RNA splicing defects as responsive biomarkers of therapeutic response with the
goal of developing effective therapeutic approaches to decrease the toxic burden of CUGexp RNAs. Aim 1 builds
upon our recent development of Dmpk CTGexp knockin mice generated using a combination of rolling circle
amplification to generate large repeats in vitro and CRISPR/Cas9-mediated genome modification. Using an
allelic series of increasing CTG repeat lengths that represent the late-onset to congenital spectrum of the DM1
pathogenic range, we will determine CTG length-dependent effects on skleletal and heart muscle
structure/function, RNA processing/localization/turnover and RAN translation. Transcriptome analysis will be
pursued further in Aim 2, which is based upon our prior observations that patient functional impairment
corresponds to RNA splicing defects and MBNL loss of function, to determine if splicing defects qualify as
effective biomarkers that are responsive to CUGexp levels, MBNL activity and therapeutic intervention. In Aim
3, we will broaden this therapeutic scope and evaluate multiple strategies, including antisense oligonucleotide
(ASO)-mediated CUGexp knockdown and small molecule approaches to inhibit transcription of mutant Dmpk
CTGexp genes. The overall objective of this project is to provide the DM field with more robust mouse models
of DM1 while also evaluating splicing defects as biomarkers of disease status and developing single small
molecule strategies
Myotonic营养不良1型(DM1),是由3'未翻译区域中CTG扩展(CTGEXP)引起的
DMPK基因的属于RNA介导的与其他相关的RNA介导的疾病机制的模型
微卫星扩张疾病,包括脆弱的X震颤/共济失调综合征(FXTA)和C9orf72
肌萎缩性侧索硬化和额颞痴呆(C9-ALS/FTD)。在DM1中,转录的
CTGEXP突变导致CugeXP RNA改变了MRNA加工的发育调控
由RNA结合蛋白的MBNL和CEL家族介导的mRNA定位事件。然而,
其他细胞途径,例如miRNA加工和重复相关的非aug翻译,也已有
与DM1发病机理有关。最重要的是,没有有效的疗法可以治疗这种治疗
神经肌肉疾病。为了解决这些缺陷,该项目旨在产生更多信息
DM1的小鼠实验模型阐明了每个提出的相对贡献
病理机制和有资格的RNA剪接缺陷作为治疗反应的反应性生物标志物与
开发有效的治疗方法以减轻CugeXP RNA的有毒负担的目标。 AIM 1构建
我们最近使用滚动圆的组合生成的DMPK CTGEXP敲击蛋白小鼠的DMPK CTGEXP敲击蛋白
放大以在体外和CRISPR/CAS9介导的基因组修饰中产生大型重复。使用一个
等位基因系列的增加CTG重复长度,代表DM1的晚期发作的晚期频谱
致病范围,我们将确定CTG对Sklemeletal和心肌的长度依赖性影响
结构/功能,RNA处理/本地化/周转和RAN翻译。转录组分析将是
在AIM 2中进一步追求,这是基于我们先前的观察结果,即患者功能障碍
对应于RNA剪接缺陷和MBNL功能丧失,以确定剪接缺陷是否有资格为
对CugeXP水平,MBNL活性和治疗干预的有效生物标志物。目标
3,我们将扩大这种治疗范围并评估多种策略,包括反义寡核苷酸
(ASO)介导的CugeXP敲低和小分子方法抑制突变体DMPK的转录
CTGEXP基因。该项目的总体目的是为DM字段提供更强大的鼠标模型
DM1的同时还评估剪接缺陷作为疾病状态的生物标志物并发展单个小型
分子策略
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MAURICE SCOTT SWANSON其他文献
MAURICE SCOTT SWANSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MAURICE SCOTT SWANSON', 18)}}的其他基金
Therapeutic strategies for microsatellite expansion diseases using RNA-targeting CRISPR/Cas
使用 RNA 靶向 CRISPR/Cas 治疗微卫星扩增疾病的策略
- 批准号:
10171924 - 财政年份:2017
- 资助金额:
$ 49.21万 - 项目类别:
Therapeutic strategies for microsatellite expansion diseases using RNA targeting
利用 RNA 靶向治疗微卫星扩增疾病的策略
- 批准号:
10588064 - 财政年份:2017
- 资助金额:
$ 49.21万 - 项目类别:
MECHANISMS OF RNA-MEDIATED CNS PATHOGENESIS IN MYOTONIC DYSTOPHY
RNA介导的强直性肌营养不良中枢神经系统发病机制
- 批准号:
8609101 - 财政年份:2008
- 资助金额:
$ 49.21万 - 项目类别:
MECHANISMS OF RNA-MEDIATED CNS PATHOGENESIS IN MYOTONIC DYSTOPHY
RNA介导的强直性肌营养不良中枢神经系统发病机制
- 批准号:
9105456 - 财政年份:2008
- 资助金额:
$ 49.21万 - 项目类别:
MECHANISMS OF RNA-MEDIATED CNS PATHOGENESIS IN MYOTONIC DYSTOPHY
RNA介导的强直性肌营养不良中枢神经系统发病机制
- 批准号:
8739678 - 财政年份:2008
- 资助金额:
$ 49.21万 - 项目类别:
Preclinical models, biomarkers, and therapy for myotonic dystrophy type 1
1 型强直性肌营养不良的临床前模型、生物标志物和治疗
- 批准号:
10021453 - 财政年份:2003
- 资助金额:
$ 49.21万 - 项目类别:
Preclinical models, biomarkers, and therapy for myotonic dystrophy type 1
1 型强直性肌营养不良的临床前模型、生物标志物和治疗
- 批准号:
10480097 - 财政年份:2003
- 资助金额:
$ 49.21万 - 项目类别:
MOUSE MUSCLEBLIND MODEL FOR MYOTONIC DYSTROPHY
强直性肌营养不良小鼠肌盲模型
- 批准号:
6824697 - 财政年份:2003
- 资助金额:
$ 49.21万 - 项目类别:
相似海外基金
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Genetic and pharmacologic elimination of myotonia from myotonic dystrophy type 1
通过遗传和药物消除 1 型强直性肌营养不良引起的肌强直
- 批准号:
10750357 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Development of Utrophin Site Blocking Oligos (SBOs) to Treat Duchenne Muscular Dystrophy (DMD)
开发 Utropin 位点封闭寡核苷酸 (SBO) 来治疗杜氏肌营养不良症 (DMD)
- 批准号:
10678195 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别: