HEG1 in endothelial function and atherosclerosis
HEG1在内皮功能和动脉粥样硬化中的作用
基本信息
- 批准号:10272942
- 负责人:
- 金额:$ 67.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAcuteAntibodiesArteriesAtherosclerosisBiologyBlood VesselsBlood flowC-terminalCCM1 geneCalciumCardiomegalyCardiovascular systemCarotid ArteriesCause of DeathCell physiologyCellsChromatinChronicCoronary arteryCytoplasmic TailDataDependenceDevelopmentDiseaseEGF geneEGF-Like DomainEndothelial CellsEndotheliumExposure toExtracellular StructureFunctional disorderGenesGlassGlycocalyxHeartHourHumanIn VitroInflammationInflammatoryIntegral Membrane ProteinIntercellular JunctionsKnock-outKnockout MiceLigationMediatingMesenchymalModelingModificationMonoclonal AntibodiesMusMutagenesisMyocardial InfarctionN-terminalOxidation-ReductionPermeabilityPhenotypePlayPreventionProcessProteinsRegulationRoleSignal TransductionSignaling ProteinSmall Interfering RNAStainsStrokeStructureTestingTransmembrane DomainUltrasonographyUntranslated RNAValidationZebrafishatheroprotectivebasecardiogenesiscell immortalizationchronic inflammatory diseaseclinically significantendothelial dysfunctionin vivoinhibitor/antagonistknock-downmagnetic beadsmutantnew therapeutic targetnovelnovel therapeutic interventionoverexpressionpreventrelease of sequestered calcium ion into cytoplasmresponsesensorshear stresssingle-cell RNA sequencingtranscriptome sequencingvectorwestern diet
项目摘要
SUMMARY
Atherosclerosis is a chronic inflammatory disease that underlies heart attacks and stroke. The disease
preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), in part by altering expression of
flow-sensitive genes. While looking for flow-sensitive long non-coding RNAs, we identified the flow-sensitive
heart of glass (HEG1) gene as a potential target. Previous studies using HEG1 knockouts in zebra fish and mice
have demonstrated its critical role in cardiovascular development and vascular integrity, but its role and
mechanisms of action in vascular biology and atherosclerosis are far from clear. Recently, we generated exciting
preliminary data, including a single-cell RNAseq study using the mouse partial carotid ligation (PCL) model,
demonstrating that HEG1 expression is increased by stable flow (s-flow) and decreased under disturbed flow (d-
flow) conditions. HEG1 knockdown in human aortic endothelial cells (HAECs) induces inflammation, barrier
dysfunction, and endothelial-mesenchymal transition (EndMT), key pro-atherogenic processes. HEG1 has a long
N-terminal extracellular structure containing two highly glycosylated (Gly) domains (potential flow sensing
domain), three EGF-like (EGFL) domains containing highly conserved Cys clusters (potential redox-sensitive,
flow-sensing domain),a transmembrane (TM) domain, and the cytosolic C-terminal (C-term signal transduction)
domain. Our preliminary results show that HEG1 1) can be pulled with a HEG1 antibody or sheared to induce
Ca++ flux, and 2) is redox-sensitive in a Poldip2-dependent manner. Based on these exciting data, we
hypothesize that HEG1 protein is a redox-sensitive mechanosensor, mediating the atheroprotective effects of
stable flow, while HEG1 loss and malfunction by d-flow induces endothelial dysfunction leading to
atherosclerosis. We will test this hypothesis in three aims: Aim 1 will determine the role of HEG1 in flow-
dependent EC function (inflammation, EndMT, and permeability) using siRNA-mediated knockdown or
overexpression of HEG1 (using AAV-HEG1 expressing WT or 3 truncation mutants ΔGly, ΔEGFL or ΔTM+C-
term) in HAECs and immortalized mouse aortic ECs (iMAECs). EC-targeted HEG1-null mice (HEG1-EC-/-) will
be used without or with the AAV-HEG1 constructs for in vivo validation of EC function. Aim 2 will test if HEG1 is
a redox-sensitive mechanosensor by focusing on immediate changes (seconds) in intracellular calcium, acute
activation (seconds-minutes) of signaling proteins, and slow (>hours) cell changes in response to shear stress
or tensional force using magnetic beads coated with HEG1 mAb. For these studies, HAECs and iMAECs treated
with siHEG1 or the same AAV9-HEG1 constructs described in Aim 1 will be used. Aim 3 will determine the role
of HEG1 in atherosclerosis using HEG1-EC-/- mice injected with AAV-PCSK9. We will further test if transduction
with the AAV-HEG1 constructs can prevent atherosclerosis in HEG1-EC-/- mice. These studies will define if
HEG1 mediates the atheroprotective effects of stable flow by serving as a redox-sensitive mechanosensor and
may reveal novel therapeutic strategies for atherosclerosis.
概括
动脉粥样硬化是一种慢性炎症性疾病,是心脏病发作和中风的基础。疾病
优先发生在暴露于分布的血流(D-Flow)的动脉区域中,部分原因是
流动基因。在寻找流敏感长的非编码RNA时,我们确定了流敏感
玻璃(HEG1)基因的心脏作为潜在靶标。先前使用斑马鱼和小鼠中HEG1敲除的研究
已经在心血管发展和血管完整性中表现出了关键作用,但其作用和
血管生物学和动脉粥样硬化中的作用机制远非清晰。最近,我们产生了令人兴奋的
初步数据,包括使用小鼠部分颈动脉连接(PCL)模型的单细胞RNASEQ研究
证明HEG1表达通过稳定的流量(S-Flow)增加并在受干扰的流动下减少(D-
流)条件。人主动脉内皮细胞(HAEC)中的HEG1敲低诱导感染,屏障
功能障碍和内皮 - 间质转变(ENDMT),关键的亲动力学过程。 HEG1有很长的
N末端的细胞外结构,其中包含两个高糖基化(gly)结构域(电势流传感器
域),三个EGF样(EGFL)域,其中包含高度组成的CYS簇(潜在的氧化还原敏感,
流动域),跨膜(TM)结构域和胞质C末端(C-Term信号转导)
领域。我们的初步结果表明HEG1 1)可以用HEG1抗体拉或剪切以诱导
Ca ++通量和2)以Poldip2依赖性方式对氧化还原敏感。基于这些令人兴奋的数据,我们
假设HEG1蛋白是一种对氧化还原敏感的机制,介导
稳定的流动,而D-Flow的HEG1损失和故障会诱导内皮功能障碍,导致
动脉粥样硬化。我们将在三个目标中检验这一假设:AIM 1将确定HEG1在流动中的作用 -
使用siRNA介导的敲低或
HEG1的过表达(使用表达WT或3截断突变体ΔGly,ΔEGFL或ΔTM+C-的AAV-HEG1的过表达
术语)在HAEC和永生的小鼠主动脉EC(IMAEC)中。 EC靶向的HEG1-NULL小鼠(HEG1-EC - / - )将
在没有AAV-HEG1构建体的情况下用于体内验证EC功能。 AIM 2将测试HEG1是否
通过关注细胞内钙的立即变化(秒),一种对氧化还原敏感的机理使用者
信号蛋白的激活(秒)激活(几分钟),以及缓慢(>小时)的细胞变化,响应剪切应力
或使用涂有HEG1 mAb的磁珠的拉伸力。对于这些研究,HAEC和IMAEC治疗了
使用SIHEG1或AIM 1中描述的相同的AAV9-HEG1构建体。 AIM 3将决定角色
使用AAV-PCSK9注入的HEG1-EC - / - 小鼠在动脉粥样硬化中的HEG1的of。我们将进一步测试是否翻译
使用AAV-HEG1构建体可以防止HEG1-EC - / - 小鼠的动脉粥样硬化。这些研究将定义是否
HEG1通过用作氧化还原敏感的机械传感器和
可能揭示了动脉粥样硬化的新型治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanjoong Jo其他文献
Hanjoong Jo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanjoong Jo', 18)}}的其他基金
Role of CEBPb in flow-dependent endothelial dysfunction and atherosclerosis
CEBPb 在血流依赖性内皮功能障碍和动脉粥样硬化中的作用
- 批准号:
10638650 - 财政年份:2023
- 资助金额:
$ 67.8万 - 项目类别:
HEG1 in endothelial function and atherosclerosis
HEG1在内皮功能和动脉粥样硬化中的作用
- 批准号:
10630328 - 财政年份:2021
- 资助金额:
$ 67.8万 - 项目类别:
Shear stress, endothelial miRNAs, and AV calcification
剪切应力、内皮 miRNA 和 AV 钙化
- 批准号:
10171094 - 财政年份:2020
- 资助金额:
$ 67.8万 - 项目类别:
Role of flow-sensitive KLK10 in endothelial dysfunction and atherosclerosis
流量敏感的 KLK10 在内皮功能障碍和动脉粥样硬化中的作用
- 批准号:
10210428 - 财政年份:2018
- 资助金额:
$ 67.8万 - 项目类别:
Shear stress, endothelial miRNAs, and AV calcification
剪切应力、内皮 miRNA 和 AV 钙化
- 批准号:
8563026 - 财政年份:2013
- 资助金额:
$ 67.8万 - 项目类别:
Shear stress, endothelial miRNAs, and AV calcification
剪切应力、内皮 miRNA 和 AV 钙化
- 批准号:
8720061 - 财政年份:2013
- 资助金额:
$ 67.8万 - 项目类别:
Shear stress, endothelial miRNAs, and AV calcification
剪切应力、内皮 miRNA 和 AV 钙化
- 批准号:
10510621 - 财政年份:2013
- 资助金额:
$ 67.8万 - 项目类别:
Shear stress, endothelial miRNAs, and AV calcification
剪切应力、内皮 miRNA 和 AV 钙化
- 批准号:
9063173 - 财政年份:2013
- 资助金额:
$ 67.8万 - 项目类别:
Shear stress, endothelial miRNAs, and AV calcification
剪切应力、内皮 miRNA 和 AV 钙化
- 批准号:
10321908 - 财政年份:2013
- 资助金额:
$ 67.8万 - 项目类别:
Shear stress, endothelial miRNAs, and AV calcification
剪切应力、内皮 miRNA 和 AV 钙化
- 批准号:
9270596 - 财政年份:2013
- 资助金额:
$ 67.8万 - 项目类别:
相似国自然基金
经动脉注射纳米抗体阻断P2X7炎症通道对急性缺血性脑卒中的保护作用及机制研究
- 批准号:82201626
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
急性抗体介导排斥反应中NTPDase1-腺苷通路激活巨噬细胞及其损伤的机制研究
- 批准号:82270782
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
急性抗体介导排斥反应中NTPDase1-腺苷通路激活巨噬细胞及其损伤的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
β2肾上腺素受体/Gi通路通过抑制β1肾上腺素受体自身抗体生成减轻急性心肌梗死后心脏损伤的作用及机制
- 批准号:82200284
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
经动脉注射纳米抗体阻断P2X7炎症通道对急性缺血性脑卒中的保护作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of inflammation in the regulation of immune response in acute myeloid leukemia
炎症在急性髓系白血病免疫反应调节中的作用
- 批准号:
10729281 - 财政年份:2023
- 资助金额:
$ 67.8万 - 项目类别:
Investigating dysregulation of hematopoietic stem cell support in sickle cell disease mesenchymal stromal cells
研究镰状细胞病间充质基质细胞中造血干细胞支持的失调
- 批准号:
10752050 - 财政年份:2023
- 资助金额:
$ 67.8万 - 项目类别:
COVID-19 imprints airway basal cells to impair epithelium regeneration
COVID-19 印记气道基底细胞,损害上皮再生
- 批准号:
10738549 - 财政年份:2023
- 资助金额:
$ 67.8万 - 项目类别:
Characterization of human DRG at the single cell level via integrated transcriptomics and spatial proteomics
通过整合转录组学和空间蛋白质组学在单细胞水平表征人类 DRG
- 批准号:
10707415 - 财政年份:2022
- 资助金额:
$ 67.8万 - 项目类别:
Project II: Immune regulatory circuits in primary colon cancer and lymph node and liver metastases
项目二:原发性结肠癌及淋巴结和肝转移的免疫调节回路
- 批准号:
10525193 - 财政年份:2022
- 资助金额:
$ 67.8万 - 项目类别: