Ms. LILAC: Muscle Mass in the Life and Longevity After Cancer (LILAC) Study

LILAC 女士:癌症后生命和长寿 (LILAC) 研究中的肌肉质量

基本信息

项目摘要

ABSTRACT There is emerging evidence that cancer and its treatments may accelerate the normal aging process, increasing the magnitude and rate of decline in functional capacity. This accelerated aging process is hypothesized to hasten the occurrence of common adverse age-related outcomes in cancer survivors, including loss of muscle mass and decrease in physical function. However, there is no data describing age-related loss of muscle mass and its relation to physical function in the long-term in cancer survivors. This project will directly address three key methodological challenges in research on cancer survivorship: 1) obtaining accurate measures of skeletal muscle mass in large population-based cohorts of community dwelling older adults, 2) disentangling the effect of age versus cancer on the relationship between muscle mass, physical function (gait speed, balance, strength), and functional decline, and 3) the large sample size required to understand predictors of low muscle mass using big data (machine learning) approaches. The D3-creatine dilution method (D3Cr) will be used to obtain a direct measure of muscle mass remotely, using a protocol that has been previously validated in clinical and epidemiologic research. This study will measure D3Cr muscle mass in 6614 participants (3044 cancer survivors and 3570 cancer-free controls) in the Women’s Health Initiative (WHI), a large prospective cohort study (n=161,808) of postmenopausal women with over 25 years of follow-up. Participants will be drawn from two sub-cohorts embedded within the WHI using an incidence density sampling approach. Cancer survivors will be drawn from an existing NCI-funded survivorship cohort, the Life and Longevity After Cancer (LILAC) cohort, and cancer-free controls will be drawn from the WHI Long Life Study 2. The overall objective of this application is to examine the antecedents and consequences of low muscle mass in cancer survivors, using innovative methods to overcome major sources of bias common in cancer research. The study aims are to: 1) create age-standardized muscle mass percentile curves and z-scores to characterize the distribution of D3- muscle mass in cancer survivors and non-cancer controls, 2) compare muscle mass, physical function, and functional decline in cancer survivors and non- cancer controls, and 3) use machine learning approaches to generate multivariate risk-prediction algorithms to detect low muscle mass. This project addresses an urgent need identified by the NCI for research in older and long-term cancer survivors. The results of this study will be used to develop interventions to mitigate the harmful effects of low muscle mass in older adults and promote healthy survivorship in cancer survivors in the old (>65) and oldest-old (>85) age groups.
抽象的 有新兴的证据表明,癌症ATS tereatments可能会加速正常衰老 过程,增加功能能力的幅度和下降速度 假设衰老过程以加快常见不良年龄相关的发生 癌症幸存者的结果,包括肌肉丧失和身体机能的减少。 但是,无数据描述说明与年龄相关的肌肉质量损失,并且与物理有关 长期在癌症幸存者中发挥作用。 癌症生存研究中的方法论挑战:1)获得准确的措施 大型社区居住老年人的骨骼肌质量,2) 消除年龄与癌症对肌肉质量之间关系的影响 功能(步态速度,平衡,强度)和功能下降,3)大样本量 使用大数据(机器学习)了解低肌肉质量的预测指标 方法。 使用以前在临床和 流行病学研究将测量6614名参与者的D3CR肌肉 女性健康计划(WHI)中的癌症幸存者和3570个无癌对照) 预期队列研究(N = 161,808)的绝经后妇女超过25个随访。 参与者将使用Ang Angidigentives中的两个子孔嵌入嵌入在嵌入在Wiwi中的子孔。 密度采样方法。 生存队列,癌症后的寿命和寿命(淡紫色)队列和无癌症对照 将从长期研究2中得出。该应用的总体目的是 使用癌症幸存者中低肌肉肌肉的先例和奉献者使用 克服癌症研究中常见的主要偏见的创新方法 目的是:1)创建标准化的肌肉质量百分位曲线和z得分 表征癌症幸存者和非癌症对照中D3肌肉质量的分布,2) 比较癌症幸存者和非 - 癌症控制和3)使用机器学习方法来产生多元风险预测 检测低肌肉质量的算法。该项目解决了您的紧急需求 NCI用于较旧的和长期的癌症幸存者。 制定干预措施,以减轻老年人低肌肉质量的Harmoful影响 在旧(> 65)和最大的(> 85)年龄段的癌症幸存者中促进健康的生存。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hailey Rose Banack其他文献

Hailey Rose Banack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hailey Rose Banack', 18)}}的其他基金

MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
  • 批准号:
    10736293
  • 财政年份:
    2023
  • 资助金额:
    $ 66.96万
  • 项目类别:
Ms. LILAC: Muscle Mass in the Life and Longevity After Cancer (LILAC) Study
LILAC 女士:癌症后生命和长寿 (LILAC) 研究中的肌肉质量
  • 批准号:
    10446331
  • 财政年份:
    2022
  • 资助金额:
    $ 66.96万
  • 项目类别:

相似国自然基金

老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
  • 批准号:
    81902295
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
  • 批准号:
    10643624
  • 财政年份:
    2023
  • 资助金额:
    $ 66.96万
  • 项目类别:
A First-in-class Topical Immunoregulatory Therapeutic for Psoriasis
一流的牛皮癣局部免疫调节疗法
  • 批准号:
    10820331
  • 财政年份:
    2023
  • 资助金额:
    $ 66.96万
  • 项目类别:
Perspectives of Correctional Officers about Older Adults in Prison: A Grounded Theory Study
惩教人员对监狱中老年人的看法:扎根理论研究
  • 批准号:
    10749275
  • 财政年份:
    2023
  • 资助金额:
    $ 66.96万
  • 项目类别:
Cognitive aging in long-term breast cancer survivors
长期乳腺癌幸存者的认知衰老
  • 批准号:
    10566264
  • 财政年份:
    2023
  • 资助金额:
    $ 66.96万
  • 项目类别:
Rehabilitation & Engineering Center for Optimizing Veteran Engagement & Reintegration (RECOVER)
复原
  • 批准号:
    10762205
  • 财政年份:
    2023
  • 资助金额:
    $ 66.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了