Point-of-care cellular and molecular pathology of breast tumors on a cell phone
在手机上进行乳腺肿瘤的护理点细胞和分子病理学
基本信息
- 批准号:10586029
- 负责人:
- 金额:$ 58.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressAfricaAntibodiesAutomobile DrivingBiological AssayBiological MarkersBreastBreast Cancer CellBreast Cancer PatientBreast Cancer TreatmentBreast biopsyCancer EtiologyCaringCellsCellular MorphologyCellular PhoneCessation of lifeClinicalClinical ResearchClinical TrialsComputer softwareCore BiopsyCorrelation StudiesCountryCytologyCytopathologyDataDevelopmentDevice or Instrument DevelopmentDevicesDiagnosisDiagnosticEpidermal Growth Factor ReceptorEstrogen ReceptorsEvaluationFine needle aspiration biopsyHealth PersonnelHealth Services AccessibilityHistologyHistopathologyHumanImageImaging DeviceImmunodiagnosticsImmunohistochemistryInfrastructureInterventionInvestigationLifeMalignant NeoplasmsMammary NeoplasmsMeasuresMedical centerMethodsModificationMolecularMolecular ProfilingMusNeedlesNorth CarolinaOperative Surgical ProceduresOutcomePathologicPathological StagingPathologistPathologyPatient CarePatient-Focused OutcomesPatientsPerformancePersonsPhasePilot ProjectsPopulationProgesterone ReceptorsPrognosisProliferatingResearchResearch PersonnelResource-limited settingResourcesSamplingSelection for TreatmentsSensitivity and SpecificityServicesSpecimenTanzaniaTechnologyTelemedicineTestingTrainingTraining and InfrastructureTranslatingTranslationsTumor MarkersTumor SubtypeUniversitiesValidationVisitWomanaccurate diagnosisalgorithm trainingaspiratebreast cancer diagnosisbreast cancer survivalbreast pathologycancer cellcancer diagnosiscancer subtypescellular imagingcellular pathologyclinical investigationclinically relevantcloud platformcostdata repositorydisorder subtypeimprovedimproved outcomeindustry partnerinnovationmachine learning algorithmmalignant breast neoplasmmobile computingmolecular markermolecular pathologymortalitypoint of carepoint of care testingpre-clinicalpreclinical studyprotein biomarkersprototyperapid diagnosisresponsesmartphone applicationsmartphone based devicesubtype-specific therapiestreatment planningtumorusabilityuser-friendlyvirtualwireless transmission
项目摘要
ABSTRACT
Breast cancer (BC) is the most common cancer among women and is the leading cause of cancer death in
women worldwide, with 1.6 million new cases and 500,000 BC deaths annually. Patients diagnosed in low-
resource settings (LRS) account for half of new cases, and the majority of deaths from BC worldwide. The first
critical step to starting life-saving treatment for BC is the accurate and timely pathologic confirmation of a cancer
diagnosis, a task which remains challenging in many LRS. Traditional pathology assessment involves processing
surgically excised specimens with cell-block methods for: (1) cellular histopathology, which identifies abnormal
cellular morphologies indicative of malignancy, and (2) molecular pathology, which identifies tumor biomarkers,
specifically estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2
(HER2), and the proliferation maker Ki67. Breast cancer subtyping using these markers is essential for
determining prognosis, as well as for selecting subtype-specific therapies. Unfortunately, histology-based
pathology services require a strong pathology infrastructure and trained pathologists, limiting access to these
services in many LRS. For example, there are only 15 trained pathologists in Tanzania, a country of over 55
million people. There is hence an urgent need for new methods to accurately diagnose cancer, as well as to
analyze expression levels of molecular biomarkers for tumor subtyping. A technology driven solution that could
automate cellular pathology with minimal user-intervention and virtually no infrastructure requirements could thus
enormously impact the management of breast cancer in LRS. Motivated by this need, the objective of this
proposal is to finalize the development of the EpiView-D4 point-of-care test (POCT) to analyze both the cellular
and molecular features of breast cancer from needle aspiration specimens. The EpiView component of the
device enables easily accessible, low-cost, smart-phone based brightfield cellular imaging of fine needle aspirate
breast biopsies without the need for pathologist assessment. In parallel, the D4 POCT component of the device
images a point-of-care antibody microarray for the quantification of ER/PR/Her2/Ki67 levels from breast FNA
lysate with picomolar sensitivity within 30 minutes at point-of-care, eliminating the need for additional visits before
a treatment plan can be initiated. The EpiView-D4 will enable automated readout of both cytopathology and the
molecular profiles of breast cancer, using machine learning algorithms integrated into a smartphone application.
In this proposal, we will conduct final device development and training of ML algorithms, followed by pre-clinical
validation and clinical investigation of the Epiview-D4 POCT, first at Duke University Medical Center, and then
in the intended LRS of Kilimanjaro Christian Medical Center. The impact of this technology lies in its potential to
dramatically improve breast cancer management worldwide by enabling rapid and accurate diagnosis and
subtyping of breast cancers, thereby driving timely and appropriate treatment for breast cancer patients and
hence improving the outcomes for hundreds of thousands of women with BC annually in LRS.
抽象的
乳腺癌(BC)是女性中最常见的癌症,也是女性癌症死亡的主要原因。
全球每年有 160 万新发病例和 50 万 BC 死亡。诊断为低度血症的患者
资源环境 (LRS) 占全球 BC 新增病例的一半和死亡人数的大部分。第一个
开始 BC 挽救生命治疗的关键一步是准确、及时地对癌症进行病理学确认
诊断,对于许多 LRS 来说仍然是一项具有挑战性的任务。传统的病理评估涉及处理
使用细胞块方法手术切除的标本用于:(1)细胞组织病理学,识别异常
指示恶性肿瘤的细胞形态,以及(2)分子病理学,可识别肿瘤生物标志物,
特别是雌激素受体 (ER)、孕激素受体 (PR)、人表皮生长因子受体-2
(HER2) 和增殖标记 Ki67。使用这些标记物进行乳腺癌亚型分析至关重要
确定预后以及选择亚型特异性疗法。不幸的是,基于组织学
病理服务需要强大的病理基础设施和训练有素的病理学家,限制了对这些服务的获取
许多 LRS 中的服务。例如,坦桑尼亚只有 15 名经过培训的病理学家,而该国拥有超过 55 名病理学家。
万人。因此,迫切需要新的方法来准确诊断癌症,以及
分析肿瘤亚型的分子生物标志物的表达水平。技术驱动的解决方案可以
以最少的用户干预实现细胞病理学的自动化,并且几乎不需要基础设施
极大地影响了 LRS 中乳腺癌的治疗。在这种需求的推动下,本次活动的目的
该提案的目的是完成 EpiView-D4 即时检测 (POCT) 的开发,以分析细胞
以及针吸标本中乳腺癌的分子特征。 EpiView 组件
该设备可轻松获取、低成本、基于智能手机的细针抽吸明场细胞成像
乳房活检,无需病理学家评估。同时,设备的 D4 POCT 组件
对床旁抗体微阵列进行成像,用于定量乳腺 FNA 中的 ER/PR/Her2/Ki67 水平
在护理点 30 分钟内即可获得具有皮摩尔灵敏度的裂解液,无需在检测前进行额外就诊
可以启动治疗计划。 EpiView-D4 将能够自动读出细胞病理学和
使用集成到智能手机应用程序中的机器学习算法来了解乳腺癌的分子特征。
在这个提案中,我们将进行最终的设备开发和机器学习算法的训练,然后是临床前
Epiview-D4 POCT 的验证和临床研究,首先在杜克大学医学中心,然后
在乞力马扎罗基督教医疗中心的预期 LRS 中。这项技术的影响在于它的潜力
通过实现快速、准确的诊断和治疗,显着改善全球乳腺癌管理
乳腺癌亚型,从而推动乳腺癌患者及时、适当的治疗
因此,每年 LRS 改善了数十万患有 BC 的女性的治疗结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashutosh Chilkoti其他文献
Ashutosh Chilkoti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashutosh Chilkoti', 18)}}的其他基金
Development, Clinical Validation, and Readiness for Implementation of a Novel Mp1p D4 Poin Diagnosis of Talaromycosist of Care Test for Rapid
新型 Mp1p D4 点诊断踝部真菌护理测试的开发、临床验证和准备实施
- 批准号:
10700281 - 财政年份:2023
- 资助金额:
$ 58.5万 - 项目类别:
Multiplex point-of-care test for diagnosis, prognosis and serology of COVID19
用于 COVID19 诊断、预后和血清学的多重即时检测
- 批准号:
10417262 - 财政年份:2021
- 资助金额:
$ 58.5万 - 项目类别:
Multiplex point-of-care test for diagnosis, prognosis and serology of COVID19
用于 COVID19 诊断、预后和血清学的多重即时检测
- 批准号:
10297706 - 财政年份:2021
- 资助金额:
$ 58.5万 - 项目类别:
Multiplex point-of-care test for diagnosis, prognosis and serology of COVID19
用于 COVID19 诊断、预后和血清学的多重即时检测
- 批准号:
10641013 - 财政年份:2021
- 资助金额:
$ 58.5万 - 项目类别:
Injectable PEG-like Conjugate for Sustained Delivery of a Peptide Drug for Type 2 Diabetes Treatment
用于持续递送肽药物治疗 2 型糖尿病的可注射 PEG 样缀合物
- 批准号:
10314066 - 财政年份:2020
- 资助金额:
$ 58.5万 - 项目类别:
Injectable PEG-like Conjugate for Sustained Delivery of a Peptide Drug for Type 2 Diabetes Treatment
用于持续递送肽药物治疗 2 型糖尿病的可注射 PEG 样缀合物
- 批准号:
10520019 - 财政年份:2020
- 资助金额:
$ 58.5万 - 项目类别:
Point-of-care cellular and molecular pathology of breast tumors on a cell phone
在手机上进行乳腺肿瘤的护理点细胞和分子病理学
- 批准号:
10358633 - 财政年份:2020
- 资助金额:
$ 58.5万 - 项目类别:
A Fully Integrated Point-of-Care Test for Ebola
完全集成的埃博拉即时护理测试
- 批准号:
10269019 - 财政年份:2020
- 资助金额:
$ 58.5万 - 项目类别:
A Fully Integrated Point-of-Care Test for Ebola
完全集成的埃博拉即时护理测试
- 批准号:
10468131 - 财政年份:2020
- 资助金额:
$ 58.5万 - 项目类别:
A Fully Integrated Point-of-Care Test for Ebola
完全集成的埃博拉即时护理测试
- 批准号:
10119782 - 财政年份:2020
- 资助金额:
$ 58.5万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Vanderbilt-Nigeria Biostatistics Training Program (VN-BioStat)
范德比尔特-尼日利亚生物统计学培训计划(VN-BioStat)
- 批准号:
10594548 - 财政年份:2022
- 资助金额:
$ 58.5万 - 项目类别:
Vanderbilt-Nigeria Biostatistics Training Program (VN-BioStat)
范德比尔特-尼日利亚生物统计学培训计划(VN-BioStat)
- 批准号:
10470510 - 财政年份:2022
- 资助金额:
$ 58.5万 - 项目类别:
MEDSCAN: Mobile Enabled Diagnostics for Schistosomiasis Control Analytics
MEDSCAN:用于血吸虫病控制分析的移动诊断
- 批准号:
10279946 - 财政年份:2021
- 资助金额:
$ 58.5万 - 项目类别:
MEDSCAN: Mobile Enabled Diagnostics for Schistosomiasis Control Analytics
MEDSCAN:用于血吸虫病控制分析的移动诊断
- 批准号:
10654812 - 财政年份:2021
- 资助金额:
$ 58.5万 - 项目类别:
MADIVA (Multimorbidity in Africa: Digital innovation, visualisation and application)
MADIVA(非洲的多发病:数字创新、可视化和应用)
- 批准号:
10658989 - 财政年份:2021
- 资助金额:
$ 58.5万 - 项目类别: