Bayesian multivariate 3D spatial modeling for microbiome image analysis
用于微生物组图像分析的贝叶斯多元 3D 空间建模
基本信息
- 批准号:10586135
- 负责人:
- 金额:$ 61.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-04 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnalysis of VarianceArchitectureAreaAstronomyBacteriaBiologicalCalibrationCellsCharacteristicsClinicalCommunitiesComplexComputer softwareConfocal MicroscopyDataData SetDependenceDevelopmentDimensionsDiseaseEcologyEnvironmentEpitheliumEvaluationExhibitsFluorescent in Situ HybridizationForestryFree WillGoalsHealthHourHumanImageImage AnalysisImaging TechniquesJointsKnowledgeLabelLocationMapsMathematicsMeasuresMedical ImagingMethodsMicrobeMicrobial BiofilmsMicrobiologyModelingMultivariate AnalysisNutrientOralOral cavityOrganellesPathogenicityPatternPerformancePhysiologyPlayProcessRadialRecording of previous eventsRoleRunningSalivarySamplingSiteSliceSpatial DistributionStatistical MethodsStructureSurfaceSystemTaxonTaxonomyTechniquesTechnologyTestingThree-Dimensional ImageTongueVisualizationWorkbiomedical imagingcell typecommunity organizationscomputerized toolsdata integrationdisorder controldisorder preventionexperienceflexibilityhigh dimensionalityimprovedinnovationinsightmicrobialmicrobial communitymicrobiomemicrobiome researchmicroorganism interactionnoveloral biofilmorganizational structurescale upskillssoftware developmentspectrographstatisticsthree-dimensional modelingtooltwo-dimensionaluser-friendlyvirtual
项目摘要
Bacteria play critical beneficial and harmful roles in human health. Living in biofilm communities, one
species may attack, protect, or provide nutrients for neighboring species. These interactions determine the
community's net effects. Clarifying community organization is needed to understand how biofilm affects health.
To begin to meet this need, we developed an imaging technique, Combinatory Labeling and Spectral
Imaging Fluorescence in Situ Hybridization (CLASI-FISH), which displays how taxa's cells are located relative
to each other and to host cells. Yet biofilm's complex, three-dimensional (3D) architecture is poorly captured by
commonly used measures, such as intercellular distances or global biofilm volume for one or two taxa.
Here, we propose to extend Log Gaussian Cox process models (LGCP) to describe and test hypotheses
about human biofilm architecture, a novel application. Computational burden limits existing LGCP models for
geostatistical data to datasets with thousands of observations. These methods cannot be applied to biofilm
image data typically containing millions of observations. In preliminary work on two-dimensional (2D) biofilm
images, we have successfully scaled up multivariate LGCPs for six taxa. Estimated pairwise cross-correlation
functions differ in univariate analyses, which ignore other taxa's locations, versus multivariate analyses, which
leverage taxa's joint spatial distribution. We propose statistical innovations to address challenges raised by, but
not unique to, 3D biofilm images. Comparing biofilm across sample groups defined experimentally or based on
exposure history requires integrating data across subjects' images that lack true spatial correspondence.
Further, 3D spatial analyses have not been applied to multivariate data with millions of observations.
The goal of this proposal is therefore to build a Bayesian multivariate 3D LGCP that incorporates different
images—thereby allowing for non-spatial covariate factors—by applying a separate coordinate system to each
image. This proposal has three parts: (a) the development of novel multivariate 3D spatial analysis methods
(aims 1-3), (b) evaluation of a hypothesis regarding the spatial structure of human tongue microbiome (aim 4),
and (c) software development and dissemination, based on best practices (aim 5). The interdisciplinary team
has a deep skill set and experience developing Bayesian high-dimensional multivariate analysis methods.
The core innovation proposed is to integrate non-spatial covariates with multivariate spatial data across 3D
images lacking a common coordinate system. Sample accessibility and prior biological knowledge make the
oral cavity the best starting point to develop a flexible modeling framework that will allow testing of hypotheses
regarding microbial interactions and associations with host characteristics. This is a fundamental shift for how
such images will be analyzed, potentially providing new insight into the role of oral microbes. In advancing
capabilities for studying multivariate 3D spatial patterns across images, the mathematical adaptations and
software we develop will have the potential to yield a breakthrough technology.
细菌在人类健康中起着至关重要的有益和有害作用。生活在生物膜社区,一个
物种可能会攻击,保护或为邻近物种提供营养。这些互动决定了
社区的净效应。需要澄清社区组织,以了解生物膜如何影响健康。
为了开始满足这种需求,我们开发了成像技术,组合标签和光谱
成像荧光原位杂交(CLASI-FISH),该杂交显示分类单元的相对位置
彼此和宿主细胞。然而,生物膜的复杂的三维(3D)结构的捕获很差
通常使用的措施,例如一个或两个分类单元的细胞间距离或全球生物膜体积。
在这里,我们建议扩展日志高斯Cox过程模型(LGCP)以描述和检验假设
关于人类生物膜建筑,一种新颖的应用。计算燃烧限制现有的LGCP模型
对数据集的地理数据进行了数千个观察结果。这些方法不能应用于生物膜
图像数据通常包含数百万个观测值。在二维(2D)生物膜的初步工作中
图像,我们已成功地扩大了六个分类单元的多元LGCP。估计的成对互相关
单变量分析的功能不同,该分析忽略了其他分类单元的位置,而不是多变量分析,
利用分类单元的联合空间分布。我们提出统计创新,以应对由此提出的挑战,但
不是独特的3D生物膜图像。比较跨样本组的生物膜,以实验或基于
暴露历史需要在受试者缺乏真正的空间对应的图像中整合数据。
此外,3D空间分析尚未应用于具有数百万个观察结果的多元数据。
因此,该提案的目的是建立一个包含不同的贝叶斯多元3D LGCP
图像 - 允许非空间协变量因素 - 通过在每个方面应用单独的坐标系
图像。该提案有三个部分:(a)新型多元3D空间分析方法的发展
(目的1-3),(b)评估有关人舌微生物组空间结构的假设(AIM 4),
(c)基于最佳实践的软件开发和传播(AIM 5)。跨学科团队
具有深厚的技能和经验,开发贝叶斯高维多元分析方法。
提出的核心创新是将非空间协变量与3D的多元空间数据相结合
缺少公共坐标系的图像。样本可访问性和先前的生物学知识使得
口腔是开发灵活建模框架的最佳起点,该框架将允许测试假设
考虑微生物相互作用和与宿主特征的关联。这是对如何的基本转变
将分析此类图像,并有可能对口腔微生物的作用提供新的见解。在前进
研究图像跨图像,数学适应和
我们开发的软件将有可能产生突破性技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KYU HA LEE其他文献
KYU HA LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KYU HA LEE', 18)}}的其他基金
Bayesian multivariate image analysis for studying oral microbiome biogeography
用于研究口腔微生物组生物地理学的贝叶斯多元图像分析
- 批准号:
10336589 - 财政年份:2021
- 资助金额:
$ 61.99万 - 项目类别:
Bayesian multivariate 3D spatial modeling for microbiome image analysis
用于微生物组图像分析的贝叶斯多元 3D 空间建模
- 批准号:
10401247 - 财政年份:2021
- 资助金额:
$ 61.99万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 61.99万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 61.99万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 61.99万 - 项目类别: