Uncovering the physiological role of functional hyperemia
揭示功能性充血的生理作用
基本信息
- 批准号:10587764
- 负责人:
- 金额:$ 48.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:APP-PS1Action PotentialsAffectAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAstrocytesBiological ModelsBiosensorBlood VesselsBlood flowBrainBrain DiseasesBrain regionBuffersCalciumCellsCerebrovascular CirculationCognition DisordersDataDilatorDiseaseDisease ProgressionElectrodesElectrophysiology (science)EquilibriumFire - disastersFunctional ImagingFunctional Magnetic Resonance ImagingGlucoseGlycolysisHealthHyperemiaImageImaging TechniquesImpairmentIonsKnock-outLightLiteratureLocationMeasuresMetabolicMetabolismMonitorMusNerve DegenerationNeurodegenerative DisordersNeuronsNeurophysiology - biologic functionNeurosciencesNutrientOpsinOxidative PhosphorylationOxygenPathologyPhenotypePhysiologicalPlayPropertyProxyReactionRegulationRoleRunningSensorySignal TransductionSmooth Muscle MyocytesStimulusTechniquesTemperatureTestingTissuesVasodilationarea striataarteriolecell cortexexcitatory neuronextracellularfluorescence imagingfunctional disabilityfunctional lossimaging studyimprovedinformation processinginhibitory neuroninsightmouse modelneuralneuronal metabolismneurovascularneurovascular unitnoveloptogeneticsorientation selectivitypharmacologicreactive hyperemiaresponsesensory stimulustwo-photonvasoconstrictionvisual stimuluswasting
项目摘要
Neuronal activation leads to increases in blood flow to the region. Since its discovery in the 19th century, this
phenomenon – termed functional hyperemia – has been thought to provide increased energy nutrients to
sustain the increased neural activity. Impaired functional hyperemia is seen in many neurodegenerative
diseases including Alzheimer's disease (AD). However, these diseases also manifest reduced baseline flow
levels, making it difficult to determine the importance of functional hyperemia per se in sustaining healthy
neuronal function. Functional hyperemia also forms the basis of many imaging techniques (such as fMRI), that
take advantage of the spatially localized blood flow increase to infer the location of neural activity from
vascular/metabolic measures. Despite the widespread importance of understanding functional hyperemia for
neuroscience, the impacts of eliminating only the activity-induced increase in blood flow – without altering
baseline flow levels or the activity of neurons and other cortical cells – are still unknown. This proposal will
determine how neuronal activity and neuro-metabolism are affected in health and in Alzheimer's
disease when functional hyperemia is blocked. We recently developed a model system to block functional
hyperemia using optogenetics. To our surprise, we found that sensory-evoked neuronal responses were not
diminished when functional hyperemia was blocked. In Aim 1 we will build on this preliminary data by studying
what aspects of neural responses to sensory stimuli are altered by the loss of functional hyperemia. Two-
photon calcium imaging will be used in mouse primary visual cortex to quantify how the response amplitude
and selectivity to stimulus attributes (orientation selectivity) of excitatory and inhibitory neurons are affected.
Using electrophysiology, we will determine if temporally precise aspects of neuronal activity, such as spike
timing and network synchrony (i.e. gamma oscillations) are altered. Our working hypothesis is that blocking
functional hyperemia impairs the cellular machinery involved in generating action potentials (such as restoring
ion gradients). However, these consequences may not initially appear as reduced response levels, but rather
as alterations in spike timing, excitatory/inhibitory balance, network synchrony, and information encoding. We
will also determine if healthy young brains have the capacity to buffer the loss of functional hyperemia in ways
that a diseased brain cannot by blocking functional hyperemia in a mouse model of AD. This will also shed light
on the relative importance of reduced functional hyperemia versus baseline flow levels in AD pathology.
In Aim 2 we will study how neuronal metabolism is affected by blocking functional hyperemia. We will record
the concentrations of oxygen, glucose, lactate and ATP in the tissue to determine how blocking functional
hyperemia affects the levels of these metabolites and if it leads to altered metabolic processing in neurons. We
will also quantify how the vasculature reacts to temporary reductions in blood flow. This proposal will define the
role functional hyperemia plays in maintaining the moment-to-moment metabolic needs of neurons.
自从 19 世纪发现以来,神经元激活导致该区域的血流量增加。
这种现象——称为功能性充血——被认为可以为身体提供更多的能量营养。
维持神经活动受损的功能性充血常见于许多神经退行性疾病。
包括阿尔茨海默病 (AD) 在内的疾病 然而,这些疾病也表现出基线血流减少。
水平,使得很难确定功能性充血本身在维持健康方面的重要性
功能性充血也是许多成像技术(例如功能磁共振成像)的基础。
利用空间局部血流增加来推断神经活动的位置
尽管了解功能性充血对于血管/代谢测量具有广泛的重要性。
神经科学,仅消除活动引起的血流量增加的影响——而不改变
基线流量水平或神经元和其他皮质细胞的活动仍然未知。
确定神经活动和神经代谢如何影响健康和阿尔茨海默病
我们最近开发了一种模型系统来阻断功能性充血。
令我们惊讶的是,我们发现感觉诱发的神经反应并非如此。
在目标 1 中,我们将通过研究建立在这些初步数据的基础上。
功能性充血的丧失会改变对感觉刺激的神经反应的哪些方面。
光子钙成像将用于小鼠初级视觉皮层,以量化响应幅度
兴奋性和抑制性神经元对刺激属性的选择性(方向选择性)受到影响。
使用电生理学,我们将确定神经活动的时间精确方面,例如尖峰
我们的工作假设是阻塞。
功能性充血会损害参与产生动作电位的细胞机制(例如恢复
然而,这些后果最初可能不会表现为响应水平降低,而是表现为响应水平降低。
如尖峰时间、兴奋/抑制平衡、网络同步和信息编码的改变。
还将确定健康的年轻大脑是否有能力以某种方式缓冲功能性充血的丧失
患病的大脑无法阻止 AD 小鼠模型的功能性充血,这也将揭示这一点。
AD 病理学中减少功能性充血与基线血流水平的相对重要性。
在目标 2 中,我们将研究阻断功能性充血如何影响神经元代谢,我们将记录。
组织中氧气、葡萄糖、乳酸和 ATP 的浓度,以确定如何阻断功能
充血会影响这些代谢物的水平以及是否会导致神经元的代谢过程。
还将量化脉管系统对血流量暂时减少的反应。该提案将定义
功能性充血在维持神经元即时代谢需求方面发挥着重要作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip O'Herron其他文献
Philip O'Herron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip O'Herron', 18)}}的其他基金
The Physiological Mechanisms and Role in Neural Coding of Functional Hyperemia
功能性充血的生理机制及其在神经编码中的作用
- 批准号:
9915993 - 财政年份:2019
- 资助金额:
$ 48.98万 - 项目类别:
相似国自然基金
泛素E3连接酶接头蛋白SPOP控制离子通道KCNQ1蛋白稳定性影响心肌细胞复极化的机制研究
- 批准号:81800301
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
磁场对神经元动作电位产生与传导的影响
- 批准号:51507046
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
钙钟和膜钟对窦房结自律性的影响及与房性心律失常相互作用的机制
- 批准号:81271661
- 批准年份:2012
- 资助金额:69.0 万元
- 项目类别:面上项目
心脏再同步化治疗对失同步化心衰左心室电生理重构的影响
- 批准号:81100126
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
L型钙离子通道的不同亚型在生理状态和尼古丁成瘾状态下对于腹侧被盖区多巴胺细胞放电行为的影响及其机制
- 批准号:31000483
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of Synaptic Dysfunction by Amyloid Peptides
淀粉样肽导致突触功能障碍的机制
- 批准号:
7367843 - 财政年份:2005
- 资助金额:
$ 48.98万 - 项目类别:
Mechanisms of Synaptic Dysfunction by Amyloid Peptides
淀粉样肽导致突触功能障碍的机制
- 批准号:
7606841 - 财政年份:2005
- 资助金额:
$ 48.98万 - 项目类别:
Mechanisms of Synaptic Dysfunction by Amyloid Peptides
淀粉样肽导致突触功能障碍的机制
- 批准号:
7195748 - 财政年份:2005
- 资助金额:
$ 48.98万 - 项目类别:
Mechanisms of Synaptic Dysfunction by Amyloid Peptides
淀粉样肽导致突触功能障碍的机制
- 批准号:
7579047 - 财政年份:2005
- 资助金额:
$ 48.98万 - 项目类别:
Mechanisms of Synaptic Dysfunction by Amyloid Peptides
淀粉样肽导致突触功能障碍的机制
- 批准号:
7871871 - 财政年份:2005
- 资助金额:
$ 48.98万 - 项目类别: