Using cryo-electron tomography and live-cell fluorescent imaging to study the role of cofilin in regulating neuronal filopodial structure and dynamics

利用冷冻电子断层扫描和活细胞荧光成像研究丝切蛋白在调节神经元丝状伪足结构和动力学中的作用

基本信息

项目摘要

Project Summary/Abstract How neurons guide their processes to the correct binding partner is a complicated task, but is critical during development and recovery from injury. It involves the highly coordinated action of many cytoskeletal proteins and their binding partners within the growth cone at the tips of extending neurites, as they feel their way through the neuropil. There is a lot known about the signaling pathways that regulate neurite outgrowth and turning, but the details of how molecular structures come together to achieve growth cone behavior are still unclear. This project will initially focus on the structure of bundled cofilactin filaments (cofilin-decorated F-actin) in situ, and how this novel filament structure and fascin cross-linking determine filopodial dynamics. Here we propose that filopodial behavior is governed partially by the transition from the fascin cross-linked to a cofilin cross-linked filaments, that makes filopodial bundles more pliable. Experiments are focused around three aims: 1) to study the high-resolution structure of fascin- and cofilin-linked actin bundles to determine their impact on actin structure, 2) to determine how changes in fascin and cofilin concentration regulate filopodial dynamics and structure, and 3) determine how LIMKI and SSH1 form the core of a bidirectional regulatory mechanism for regulating actin architecture via tuning the phosphorylation state of Ser3 on cofilin.
项目摘要/摘要 神经元如何指导其过程到正确的约束伙伴是一项复杂的任务,但在 受伤的发展和恢复。它涉及许多细胞骨架蛋白的高度协调作用 他们的约束伙伴在增长锥体内,在扩展神经突的尖端,因为他们感觉到自己的方式 神经。关于调节神经突生长和转弯的信号通路有很多了解,但是 分子结构如何融合以实现生长锥行为的细节尚不清楚。这 项目最初将集中于捆绑的cofilactin丝(cofilin粉末装饰的F-肌动蛋白)的结构,并原位 这种新颖的细丝结构和Fascin的交联如何决定丝状动力学。在这里我们提出 丝虫行为由从fasfin交联到Cofilin交联的过渡部分控制 细丝,这使丝虫束更加柔韧。实验围绕三个目标:1)研究 fascin和cofilin连接肌动蛋白束的高分辨率结构,以确定它们对肌动蛋白的影响 结构,2)确定Fascin和Cofilin浓度的变化如何调节丝源动力学和 结构,以及3)确定Limki和SSH1如何形成双向调节机制的核心 通过调节Cofilin上Ser3的磷酸化状态来调节肌动蛋白结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATTHEW SWULIUS其他文献

MATTHEW SWULIUS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Role of C. elegans RAPGEF in Synapse Development at the Neuromuscular Junction
线虫 RAPGEF 在神经肌肉接头突触发育中的作用
  • 批准号:
    10676616
  • 财政年份:
    2023
  • 资助金额:
    $ 43.54万
  • 项目类别:
Molecular Mechanisms Underlying Cytoneme Formation by Sonic Hedgehog-Producing Cells
Sonic Hedgehog 产生细胞形成细胞因子的分子机制
  • 批准号:
    10678288
  • 财政年份:
    2023
  • 资助金额:
    $ 43.54万
  • 项目类别:
Molecular Determinants of Kidney Podocyte Architecture in Health, Injury, and Recovery
健康、损伤和恢复中肾足细胞结构的分子决定因素
  • 批准号:
    10659239
  • 财政年份:
    2022
  • 资助金额:
    $ 43.54万
  • 项目类别:
Molecular Mechanisms of LRRK1 Regulation of Bone Homeostasis
LRRK1调节骨稳态的分子机制
  • 批准号:
    10544742
  • 财政年份:
    2022
  • 资助金额:
    $ 43.54万
  • 项目类别:
Molecular Determinants of Kidney Podocyte Architecture in Health, Injury, and Recovery
健康、损伤和恢复中肾足细胞结构的分子决定因素
  • 批准号:
    10522754
  • 财政年份:
    2022
  • 资助金额:
    $ 43.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了