Compacted DNA Nanoparticles for Ocular Therapy
用于眼部治疗的压缩 DNA 纳米颗粒
基本信息
- 批准号:7747976
- 负责人:
- 金额:$ 36.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultBiologicalBiomedical EngineeringCell NucleusCell membraneCellsChargeChemistryCircular DNAClinicalDNADevelopmentDiseaseDisease modelDrug FormulationsEndocytosisEngineeringEye diseasesGene DeliveryGene ExpressionGene Transduction AgentGene TransferGoalsHumanInjection of therapeutic agentInterphase CellLeber&aposs amaurosisLettersLongevityLysineMitoticMolecularMusNamesNon-Viral VectorNuclear EnvelopeOpsinPharmacologic SubstancePhenotypePhysical condensationPhysicsPlasmid Cloning VectorPlasmidsPlayPolyethylene GlycolsPolymersPrincipal InvestigatorRPE65 proteinRadialResearchResource SharingRetinalRoleSafetySpecificityStargardt&aposs diseaseStructure of retinal pigment epitheliumTechnologyTestingTherapeuticTissuesToxic effectTransduction GeneUniversitiesVertebral columnViral VectorVitelliform macular dystrophyWorkcomputer sciencedesignearly onsetefficacy testinggene delivery systemgene therapyin vivonanonanoparticlenon-viral gene deliverynon-viral gene therapynovelnucleolinparticlepostnatalpre-clinicalprogramspromoterranpirnasereceptorretinal progenitor cellretinal rodstraffickingtransgene expressionuptakevector
项目摘要
DESCRIPTION (provided by applicant): The goal of this program is to advance the current compacted DNA nanoparticle based gene therapy technology to enable efficient and long-lasting gene delivery to dividing and non-dividing cells. The program will merge experts with molecular bioengineering, physics, chemistry, and computer science backgrounds at OUHSC, Stanford University and Copernicus Therapeutics, Inc, to accelerate essential preclinical steps for effective non-viral gene therapy. The plan is to engineer DNA vectors with efficient uptake and transport through the plasma membrane that can provide persistent transgene expression without toxicity. This technology can unimolecularly compact DNA with lysine polymers substituted with polyethylene glycol (PEG) into neutral charge nanoparticles with radii of less than 18 nm. These particles can penetrate the cell membrane via nucleolin receptor associated endocytosis and cross the nuclear membrane pore to the nucleus within 15 minutes. The DNA condensation formulation will compact either linear or circular DNA enabling us to eliminate plasmid backbone sequences known to play a significant role in inhibiting gene expression. The potential scientific and clinical benefits of these enhancements are substantial. While our ultimate aim is to use gene transfer to treat human ocular disease, we plan to address basic biological questions that will be important for rational design of vectors for gene therapy applications. Given the dangers inherent in the use of viral vectors, our strategy will enable us to access the favorable aspects of viral vectors while providing the safety and pharmaceutical qualities inherent in non-viral gene delivery systems. Towards this goal, we are working on developing new non-viral vectors for gene transfer to ocular tissues and establishing the cellular and molecular mechanisms involved in gene transduction. Three aims are proposed to optimize, mechanistically assess, and test our nanoparticle technology. Aim 1 will generate and compare the efficiency and longevity of EGFP expression between standard circular plasmid vectors and linear or minicircle constructs lacking the vector backbone sequence. The aim will also combine two novel gene therapy technologies, compacted DNA nanoparticles and pEPI-1 vector containing S/MAR sequence to develop an efficient and persistent gene transfer strategy in vivo. The effect of different vector sequences on promoter specificity will be assessed with two commonly used promoters in retinal gene therapy trials. To direct specific rod photoreceptor expression we will use the mouse opsin promoter (MOP) and to direct expression in the retinal pigment epithelium, we will use the vitelliform macular dystrophy 2 (VMD2) promoter. The constructs will be compacted and subretinally injected into WT mice during development at postnatal day 5 (P5) and in adults (P30). Injections at P5 will evaluate the efficacy of the nanoparticles in transfecting dividing retinal progenitor cells, and results will be relevant for the treatment of early onset eye diseases. Injections in adults will evaluate the efficacy of the nanoparticles in post-mitotic cells which is an appropriate experimental paradigm for treating late onset ocular diseases. Aim 2 will assess potential barriers to clinical vector application by evaluating particles uptake, trafficking, mechanisms of vector silencing, and in vivo safety. Aim 3 will test the efficacy of the vectors in rescuing the phenotypes in two well-known disease models: RPE65-/- (Leber's congenital amaurosis) and ABCR-/- (Stargardt's macular dystrophy).
描述(由申请人提供):该计划的目标是推进当前基于压缩 DNA 纳米粒子的基因治疗技术,以实现高效且持久的基因递送至分裂和非分裂细胞。该项目将汇集来自 OUHSC、斯坦福大学和 Copernicus Therapeutics, Inc 的具有分子生物工程、物理、化学和计算机科学背景的专家,以加快有效非病毒基因治疗的重要临床前步骤。该计划是设计能够通过质膜有效摄取和运输的 DNA 载体,从而提供持久的转基因表达而无毒性。该技术可将聚乙二醇(PEG)取代的赖氨酸聚合物单分子地将DNA压实成半径小于18 nm的中性电荷纳米颗粒。这些颗粒可以通过核仁素受体相关的内吞作用穿透细胞膜,并在15分钟内穿过核膜孔到达细胞核。 DNA 浓缩配方将压缩线性或环状 DNA,使我们能够消除已知在抑制基因表达中发挥重要作用的质粒主链序列。这些增强功能的潜在科学和临床效益是巨大的。虽然我们的最终目标是利用基因转移来治疗人类眼部疾病,但我们计划解决基本的生物学问题,这对于基因治疗应用载体的合理设计非常重要。考虑到使用病毒载体固有的危险,我们的策略将使我们能够获得病毒载体的有利方面,同时提供非病毒基因传递系统固有的安全性和药物品质。为了实现这一目标,我们正在开发新的非病毒载体,用于将基因转移到眼组织,并建立基因转导涉及的细胞和分子机制。提出了三个目标来优化、机械评估和测试我们的纳米颗粒技术。目标 1 将生成并比较标准环状质粒载体和缺乏载体主链序列的线性或小环状构建体之间 EGFP 表达的效率和寿命。该项目还将结合两种新型基因治疗技术,即压缩 DNA 纳米粒子和含有 S/MAR 序列的 pEPI-1 载体,以开发有效且持久的体内基因转移策略。将使用视网膜基因治疗试验中两种常用的启动子来评估不同载体序列对启动子特异性的影响。为了指导特定视杆光感受器的表达,我们将使用小鼠视蛋白启动子 (MOP),为了指导视网膜色素上皮中的表达,我们将使用卵黄样黄斑营养不良 2 (VMD2) 启动子。该结构将在出生后第 5 天 (P5) 和成年 (P30) 发育过程中被压实并注射到 WT 小鼠体内。 P5 时的注射将评估纳米颗粒转染分裂中的视网膜祖细胞的功效,其结果将与早发性眼病的治疗相关。成人注射将评估纳米颗粒在有丝分裂后细胞中的功效,这是治疗迟发性眼部疾病的适当实验范例。目标 2 将通过评估颗粒摄取、运输、载体沉默机制和体内安全性来评估临床载体应用的潜在障碍。目标 3 将测试载体在两种众所周知的疾病模型中拯救表型的功效:RPE65-/-(莱伯氏先天性黑蒙)和 ABCR-/-(斯塔加特黄斑营养不良)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muna I. Naash其他文献
Characterization of glutathione peroxidase in frog retina.
青蛙视网膜谷胱甘肽过氧化物酶的表征。
- DOI:
- 发表时间:
1984 - 期刊:
- 影响因子:2
- 作者:
Muna I. Naash;Robert E. Anderson - 通讯作者:
Robert E. Anderson
The regional distribution of vitamins E and C in mature and premature human retinas.
维生素 E 和 C 在成熟和早产人类视网膜中的区域分布。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:4.4
- 作者:
Jorl C. Nielsen;Muna I. Naash;Robert E. Anderson - 通讯作者:
Robert E. Anderson
Muna I. Naash的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muna I. Naash', 18)}}的其他基金
Vector engineering for non-viral delivery of large genomic DNA to the RPE
用于将大基因组 DNA 非病毒传递至 RPE 的载体工程
- 批准号:
10667049 - 财政年份:2023
- 资助金额:
$ 36.26万 - 项目类别:
Non-viral gene delivery platforms for the treatment of Usher Syndrome Type 2A.
用于治疗 2A 型亚瑟综合症的非病毒基因递送平台。
- 批准号:
10578428 - 财政年份:2023
- 资助金额:
$ 36.26万 - 项目类别:
Compacted DNA Nanoparticles for Ocular Therapy
用于眼部治疗的压缩 DNA 纳米颗粒
- 批准号:
8677899 - 财政年份:2013
- 资助金额:
$ 36.26万 - 项目类别:
Compacted DNA Nanoparticles for Ocular Therapy
用于眼部治疗的压缩 DNA 纳米颗粒
- 批准号:
8504140 - 财政年份:2013
- 资助金额:
$ 36.26万 - 项目类别:
DNA nanoparticle formulations for optimal ocular gene delivery
用于最佳眼部基因传递的 DNA 纳米颗粒配方
- 批准号:
8734431 - 财政年份:2012
- 资助金额:
$ 36.26万 - 项目类别:
DNA nanoparticle formulations for optimal ocular gene delivery
用于最佳眼部基因传递的 DNA 纳米颗粒配方
- 批准号:
8365445 - 财政年份:2012
- 资助金额:
$ 36.26万 - 项目类别:
DNA nanoparticle formulations for optimal ocular gene delivery
用于最佳眼部基因传递的 DNA 纳米颗粒配方
- 批准号:
8545860 - 财政年份:2012
- 资助金额:
$ 36.26万 - 项目类别:
Compacted DNA Nanoparticles for Ocular Therapy
用于眼部治疗的压缩 DNA 纳米颗粒
- 批准号:
8007344 - 财政年份:2008
- 资助金额:
$ 36.26万 - 项目类别:
Compacted DNA Nanoparticles for Ocular Therapy
用于眼部治疗的压缩 DNA 纳米颗粒
- 批准号:
7547382 - 财政年份:2008
- 资助金额:
$ 36.26万 - 项目类别:
Compacted DNA Nanoparticles for Ocular Therapy
用于眼部治疗的压缩 DNA 纳米颗粒
- 批准号:
8204931 - 财政年份:2008
- 资助金额:
$ 36.26万 - 项目类别:
相似国自然基金
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
高效合成人参皂苷CK的酵母细胞工厂的研究
- 批准号:21672228
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
- 批准号:81570122
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
基于IVIM-DWI的成人肾脏肿瘤影像生物学标记及其病理学基础研究
- 批准号:81471641
- 批准年份:2014
- 资助金额:72.0 万元
- 项目类别:面上项目
基于人脸和人手信息融合的面向成人和儿童的非接触式身份鉴别方法研究
- 批准号:61175022
- 批准年份:2011
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Development of a SYF2 antisense oligonucleotide treatment for ALS and FTD
开发治疗 ALS 和 FTD 的 SYF2 反义寡核苷酸
- 批准号:
10547625 - 财政年份:2023
- 资助金额:
$ 36.26万 - 项目类别:
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 36.26万 - 项目类别: