Circadian Clock Function in the Mammalian Retina

哺乳动物视网膜的昼夜节律时钟功能

基本信息

项目摘要

DESCRIPTION (provided by applicant): The daily organization of retinal function relies on passive responses to changes in ambient light intensity but also on a complex endogenous circadian clock system. The primary hallmark of clocks is that they continue to run in constant environmental conditions (e.g., total darkness) with periods of approximately 24 h (circadian clocks), and are synchronized to environmental rhythms through external cues, such as the light/dark cycle. By interacting with the dopamine and melatonin neuromodulator systems that are involved in light/dark adaptation, the retinal clock provides a mechanism to anticipate the change in light intensity that occurs at dawn and dusk, thus helping the retina to adapt in a time- and energy-efficient manner at the transition times. Accumulative indirect evidence indicates that impairment of the circadian regulation of retinal physiology may contribute to photoreceptor cell death in some degenerative retinal diseases. Therefore, establishing the basis of circadian rhythmicity in the retina is essential for our understanding of retinal physiology and pathophysiology. To this end, determining the nature and precise location of the circadian clock that drives daily rhythmicity in the retina is crucial. Recent developments in the field indicate that the clock machinery is a cell-based mechanism that relies on a set of genes and proteins (the clock components). Although the clock components are expressed in retinal tissue, the molecular mechanism and the exact location of the mammalian retinal clock are still elusive in part because clock gene expression is widespread among retinal layers. These observations suggest that more than one clock may be located in the mammalian retina. A circadian clock is likely located in the photoreceptor cells where it drives the rhythmic synthesis and release of melatonin. However, it is still unclear whether the rhythmic activity of the dopaminergic amacrine cells is under the control of a clock located within the dopaminergic cells or whether it is driven by the melatonin rhythm. Because melatonin and dopamine strongly interact with each other, it is also unclear whether light entrains retinal rhythms via its effects on dopamine or on melatonin. Our central hypothesis is that a fully functional circadian clock is located in the dopaminergic amacrine cells. The proposed experiments will be conducted on isolated mouse neural retinas maintained in vitro for several days in constant environmental conditions. Using an HPLC technique to measure dopamine levels and in situ hybridization and immunocytochemistry to analyze clock component expression, we will determine 1) whether a clock in the mouse retina controls dopamine levels and whether this rhythm is dependent on the melatonin rhythm and/or the presence of the photoreceptors; 2) which clock components display self-sustained expression in vitro and are required for the dopamine rhythm to occur; and 3) whether light entrainment primarily affects the dopamine and/or the melatonin rhythm and/or the expression of specific clock elements. Retinas from melatonin-deficient, melatonin-proficient and genetically-modified mice will be used in each of the specific aims. PUBLIC HEALTH RELEVANCE: Completion of this research project will provide a better understanding of the cellular and molecular basis of the circadian clock in the mammalian retina and thus increase our knowledge of how the circadian clock controls day/night differences in retinal function. Impairment of circadian rhythmicity in the retina has been linked to photoreceptor cell death and therefore this study will provide fundamental insights into the mechanisms that underlie retinal diseases such as retinitis pigmentosa.
描述(由申请人提供):视网膜功能的日常组织依赖于对环境光强度变化的被动反应,但也依赖于复杂的内源性生物钟系统。时钟的主要特点是它们在恒定的环境条件(例如完全黑暗)下继续运行,周期约为 24 小时(生物钟),并通过外部线索(例如光/暗周期)与环境节律同步。通过与参与光/暗适应的多巴胺和褪黑激素神经调节系统相互作用,视网膜时钟提供了一种机制来预测黎明和黄昏时发生的光强度变化,从而帮助视网膜适应时间和能量。 - 过渡时期的高效方式。累积的间接证据表明,视网膜生理昼夜节律调节受损可能导致某些退行性视网膜疾病中的感光细胞死亡。因此,建立视网膜昼夜节律的基础对于我们理解视网膜生理学和病理生理学至关重要。为此,确定驱动视网膜日常节律的生物钟的性质和精确位置至关重要。该领域的最新发展表明,时钟机制是一种基于细胞的机制,依赖于一组基因和蛋白质(时钟组件)。尽管时钟成分在视网膜组织中表达,但哺乳动物视网膜时钟的分子机制和确切位置仍然难以捉摸,部分原因是时钟基因表达在视网膜层中广泛存在。这些观察结果表明,哺乳动物的视网膜中可能存在不止一个时钟。生物钟可能位于感光细胞中,驱动褪黑激素的节律合成和释放。然而,目前尚不清楚多巴胺能无长突细胞的节律活动是否受到位于多巴胺能细胞内的时钟的控制,或者是否由褪黑激素节律驱动。由于褪黑激素和多巴胺彼此强烈相互作用,因此还不清楚光是否通过其对多巴胺或褪黑激素的影响来控制视网膜节律。我们的中心假设是,功能齐全的生物钟位于多巴胺能无长突细胞中。拟议的实验将在恒定环境条件下在体外保存数天的离体小鼠神经视网膜上进行。使用 HPLC 技术测量多巴胺水平,并使用原位杂交和免疫细胞化学分析时钟成分表达,我们将确定 1) 小鼠视网膜中的时钟是否控制多巴胺水平以及该节律是否依赖于褪黑激素节律和/或存在光感受器; 2) 哪些时钟成分在体外表现出自我维持表达并且是多巴胺节律发生所必需的; 3) 光夹带是否主要影响多巴胺和/或褪黑激素节律和/或特定时钟元件的表达。褪黑激素缺乏、褪黑激素丰富和转基因小鼠的视网膜将用于每个特定目标。公共健康相关性:该研究项目的完成将有助于更好地了解哺乳动物视网膜生物钟的细胞和分子基础,从而增加我们对生物钟如何控制视网膜功能昼夜差异的了解。视网膜昼夜节律受损与感光细胞死亡有关,因此这项研究将为视网膜色素变性等视网膜疾病的机制提供基本见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christophe P. Ribelayga其他文献

Christophe P. Ribelayga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christophe P. Ribelayga', 18)}}的其他基金

Plasticity and Function of the Rod/Cone Gap Junction
杆/锥间隙连接的可塑性和功能
  • 批准号:
    10370897
  • 财政年份:
    2022
  • 资助金额:
    $ 33.41万
  • 项目类别:
Plasticity and Function of the Rod/Cone Gap Junction
杆/锥间隙连接的可塑性和功能
  • 批准号:
    10653813
  • 财政年份:
    2022
  • 资助金额:
    $ 33.41万
  • 项目类别:
The role of circadian clocks in photoreceptor cell development, maintenance and function
生物钟在感光细胞发育、维持和功能中的作用
  • 批准号:
    9765320
  • 财政年份:
    2018
  • 资助金额:
    $ 33.41万
  • 项目类别:
Circadian Clock Function in the Mammalian Retina
哺乳动物视网膜的昼夜节律时钟功能
  • 批准号:
    7985331
  • 财政年份:
    2009
  • 资助金额:
    $ 33.41万
  • 项目类别:
Circadian Clock Function in the Mammalian Retina
哺乳动物视网膜的昼夜节律时钟功能
  • 批准号:
    8306569
  • 财政年份:
    2009
  • 资助金额:
    $ 33.41万
  • 项目类别:
Circadian Clock Function in the Mammalian Retina
哺乳动物视网膜的昼夜节律时钟功能
  • 批准号:
    8531252
  • 财政年份:
    2009
  • 资助金额:
    $ 33.41万
  • 项目类别:
Circadian Clock Function in the Mammalian Retina
哺乳动物视网膜的昼夜节律时钟功能
  • 批准号:
    8126285
  • 财政年份:
    2009
  • 资助金额:
    $ 33.41万
  • 项目类别:

相似国自然基金

星爆无长突细胞在屈光发育及近视形成中的作用
  • 批准号:
    82371090
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
可见紫光抑制小鼠视网膜VIP能无长突细胞发育增加近视易感性的作用机制研究
  • 批准号:
    82371084
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
光信号通过猴眼无长突细胞调控巩膜塑形与近视机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
无长突细胞“NO-Zn2+”信号调控视神经损伤、修复及再生的分子机制
  • 批准号:
    81870657
  • 批准年份:
    2018
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

The roles of Gbeta5 and R7 RGS protein in vision
Gbeta5和R7 RGS蛋白在视觉中的作用
  • 批准号:
    8395989
  • 财政年份:
    2012
  • 资助金额:
    $ 33.41万
  • 项目类别:
The roles of Gbeta5 and R7 RGS protein in vision
Gbeta5和R7 RGS蛋白在视觉中的作用
  • 批准号:
    8511667
  • 财政年份:
    2012
  • 资助金额:
    $ 33.41万
  • 项目类别:
Circadian Clock Function in the Mammalian Retina
哺乳动物视网膜的昼夜节律时钟功能
  • 批准号:
    7985331
  • 财政年份:
    2009
  • 资助金额:
    $ 33.41万
  • 项目类别:
Circadian Clock Function in the Mammalian Retina
哺乳动物视网膜的昼夜节律时钟功能
  • 批准号:
    8306569
  • 财政年份:
    2009
  • 资助金额:
    $ 33.41万
  • 项目类别:
Circadian Clock Function in the Mammalian Retina
哺乳动物视网膜的昼夜节律时钟功能
  • 批准号:
    8531252
  • 财政年份:
    2009
  • 资助金额:
    $ 33.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了