Decoding the Molecular and Cellular Mechanisms of Mutant KRAS-driven Brain Arteriovenous Malformations
解读突变 KRAS 驱动的脑动静脉畸形的分子和细胞机制
基本信息
- 批准号:10584546
- 负责人:
- 金额:$ 64.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAnatomyAngiogenic FactorAnimal Disease ModelsAnimal ModelArteriesBehavioral AssayBiologyBlood VesselsBlood capillariesBlood flowBrain NeoplasmsBrain hemorrhageCell Culture TechniquesCell ShapeCellsCellular biologyCentral Nervous SystemCerebral cortexCessation of lifeChildClinicalCognitionCognitiveCuesCultured CellsCytoskeletonDataDevelopmentDiagnosisDiameterDiseaseDown-RegulationEndothelial CellsEndotheliumEtiologyEventExtracellular MatrixFDA approvedFamily history ofFrequenciesGTP BindingGene ExpressionGene Expression ProfilingGenesGeneticGenetic TranscriptionGoalsGuanosine Triphosphate PhosphohydrolasesHemorrhageHistologicHistologyHomeostasisHumanHypertensionHypoxiaImageImmunohistochemistryIn VitroInterventionKRAS2 geneKnowledgeLabelLearningLesionMEK inhibitionMEKsMaintenanceMedicalMinorityMitogen-Activated Protein KinasesModalityModelingMolecularMolecular TargetMonomeric GTP-Binding ProteinsMorbidity - disease rateMorphologyMovementMusMutationNeurofibrillary TanglesOperative Surgical ProceduresPathogenesisPathologicPathway interactionsPatient-Focused OutcomesPatientsPericytesPharmaceutical PreparationsPhenotypePre-Clinical ModelPredispositionProcessPublishingRadiationResistanceRiskRuptureSamplingSeverity of illnessShunt DeviceSignal TransductionSmooth Muscle MyocytesStressStrokeTestingTherapeutic EmbolizationTimeVascular Smooth MuscleVascular remodelingVeinsZebrafishbrain arteriovenous malformationscadherin 5cell behaviordesigndisability riskexome sequencingfeedingfunctional disabilityhemodynamicshigh riskimprovedin vivoinhibitorinsightmalformationmosaicmutantneuron lossnovelnovel therapeuticsoptogeneticspharmacologicpreventrecruitresponsesensorshear stresssingle-cell RNA sequencingsurgical risktherapeutic targettranscriptomicsvascular bedyoung adult
项目摘要
SUMMARY
Brain arteriovenous malformations (bAVMs) are composed of abnormal connections between arteries and veins
that lack an intervening capillary network. As a result, high-pressure blood from feeding arteries shunts directly
into veins. These vascular lesions become distended and highly remodeled, resulting in a tangle of enlarged
blood vessels that are prone to rupture. Indeed, bAVMs are a leading cause of hemorrhagic stroke in children
and young adults. All current treatment modalities for bAVMs, including surgery, embolization or radiation carry
a significant risk of disability or death, and these options are not available for ~20% of bAVM patients due to
excessive risk. Because of these complications, alternative medical strategies with lower morbidities such as
targeted pharmacological therapies are desperately needed. However, we first need a clear understanding of
the biology underlying bAVM development and maintenance. The majority of bAVMs occur sporadically without
a family history of the disease. Using whole exome sequencing, we recently identified somatic, activating
mutations in the KRAS gene, which encodes a GTPase that is involved in signal transduction. The identified
mutations were confined to the endothelium and result in KRAS being locked in a GTP-bound ‘ON’ state. Notably,
we have established mouse and zebrafish models of endothelial-specific expression of mutant KRAS, which
have revealed the sufficiency for these genetic lesions to drive disease. We have gone on to demonstrate,
through transcriptional profiling of cultured cells and in vivo studies in zebrafish expressing mutant KRAS, that
many KRAS-induced molecular and cellular changes require MEK/ERK activity. Much remains to be learned
regarding the etiology of sporadic bAVMs and our cell culture, mouse and zebrafish models will enable us to
define the molecular, cellular and morphological changes that are involved in the initiation and maintenance of
bAVMs. We will utilize our expertise in animal models of bAVMs, imaging, cell biology, signaling and single-cell
RNA sequencing, to gain unprecedented insight into the bAVM disease process. This information will be
leveraged for the design of pharmacological interventions to improve patient outcomes. Our proposal will: 1)
define the threshold of KRAS mutant endothelial cells that can remodel vessels, 2) identify the vascular bed(s)
that are susceptible to active KRAS expression, 3) determine how KRAS mutations impact hemodynamic
signaling and bAVM progression, 4) uncover the cell-autonomous and non-cell autonomous mechanisms of
mutant KRAS, and 4) determine the requirement for KRAS and MEK activation for bAVM maintenance in our
pre-clinical models. Together, these studies will expand our understanding of bAVM pathogenesis and will
assess whether inhibition of the KRAS/MEK pathway may be a viable therapeutic target to pursue in human
patients with bAVM.
概括
脑动力畸形(BAVM)由动脉和静脉之间的异常连接组成
缺乏中间的毛细管网络。结果,喂养动脉分流的高压血液直接血液
变成静脉。这些血管病变变得膨胀并进行了高度重塑,导致缠结
容易破裂的血管。确实,Bavms是儿童出血性中风的主要原因
和年轻人。 BAVM的所有当前治疗方式,包括手术,栓塞或辐射携带
残疾或死亡的重大风险,由于约20%的BAVM患者,这些选择不可用
过多的风险。由于这些并发症,替代医疗策略具有较低的病毒性
迫切需要有针对性的药物疗法。但是,我们首先需要清楚地了解
BAVM开发和维护的生物学。大多数Bavms偶尔出现
该疾病的家族史。使用整个外显子组测序,我们最近确定了躯体,激活
KRAS基因中的突变,该突变编码与信号转导有关的GTPase。确定的
突变仅限于内皮,导致Kras被锁定在GTP绑定的状态下。尤其,
我们已经建立了突变kras内皮特异性表达的小鼠和斑马鱼模型,
已经揭示了这些遗传病变驱动疾病的充分性。我们继续演示,
通过培养细胞的转录分析和斑马鱼表达突变kras的体内研究,
许多KRAS诱导的分子和细胞变化需要MEK/ERK活性。还有很多要学到的
关注零星BAVM的病因以及我们的细胞培养,小鼠和斑马鱼模型将使我们能够
定义与主动性和维护有关的分子,细胞和形态变化
Bavms。我们将在BAVM,成像,细胞生物学,信号和单细胞的动物模型中利用我们的专业知识
RNA测序,以获得对BAVM疾病过程的前所未有的见解。这些信息将是
利用了制药干预措施的设计,以改善患者的预后。我们的建议将:1)
定义可以重塑血管的KRAS突变体内皮细胞的阈值,2)识别血管床
容易受到主动KRAS表达的影响,3)确定KRAS突变如何影响血流动力学
信号传导和BAVM进展,4)揭示细胞自主和非细胞自主机制
突变的KRAS和4)确定我们在我们的BAVM维护中对KRAS和MEK激活的要求
临床前模型。这些研究将共同扩展我们对BAVM发病机理的理解,并将
评估抑制KRAS/MEK途径是否可能是人类追求的可行治疗靶标
BAVM患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Fish其他文献
Jason Fish的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Fish', 18)}}的其他基金
Decoding the Molecular and Cellular Mechanisms of Mutant KRAS-driven Brain Arteriovenous Malformations
解读突变 KRAS 驱动的脑动静脉畸形的分子和细胞机制
- 批准号:
10446836 - 财政年份:2022
- 资助金额:
$ 64.49万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Using Natural Mouse Movement to Establish a Developmental "Biomarker" for Corticospinal Damage
利用自然小鼠运动建立皮质脊髓损伤的发育“生物标志物”
- 批准号:
10667807 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:
10664783 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Disruption of spinal circuit early development after silencing En1/Foxp2 interneurons
沉默 En1/Foxp2 中间神经元后脊髓回路早期发育中断
- 批准号:
10752857 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别: