Structure and function of Transient Receptor Potential Channels
瞬时感受器电位通道的结构和功能
基本信息
- 批准号:10583880
- 负责人:
- 金额:$ 46.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AffinityAlgaeArchitectureBindingBiochemicalBiological AssayBiophysicsBoratesCalciumCalmodulinCell LineCellsChemicalsCloningComplexCryoelectron MicroscopyDataDiseaseDrug DesignDrug TargetingElectrophysiology (science)ElementsEpitheliumEukaryotic CellEvolutionFamilyFluorescenceFundingGenetic PolymorphismGenetic VariationGoalsHaplotypesHearingHigh temperature of physical objectHumanImageInhibition of ApoptosisInhibition of Cell ProliferationIntegral Membrane ProteinIonsKnowledgeLengthLipidsMalignant NeoplasmsMechanical StressMediatingMembraneMethodsModernizationMolecularMolecular ConformationMolecular Sieve ChromatographyMutagenesisMutationNociceptionPainPathogenesisPatternPerceptionPermeabilityPhosphatidylinositol 4,5-DiphosphatePhysiologicalPiperazinesPredispositionPrognostic MarkerProtein EngineeringRattusRegulationRoleRuthenium RedSensorySiteSmell PerceptionSpecificitySpectrum AnalysisSquirrelStimulusStructureSystemTRP channelTRPV1 geneTaste PerceptionTechniquesTemperatureTherapeuticTissuesTouch sensationVanilloidVariantVisionVisualizationWorkX-Ray Crystallographybasecancer therapychemical synthesisexperiencegain of functiongenetic varianthuman diseasehuman genome sequencinghypercalciuriaimprovedin silicoinhibitormimeticsmolecular dynamicsmutantnew therapeutic targetnovel therapeutic interventionnovel therapeuticsoverexpressionrenal calciumsensorsmall moleculesuccessuptakevoltage
项目摘要
PROJECT SUMMARY
Transient Receptor Potential (TRP) channels represent polymodal cellular sensors, which integrate chemical,
temperature, mechanical stress and membrane voltage stimuli and convert them into ionic currents to regulate
our senses of vision, hearing, taste, smell and touch and contribute to the perception of temperature and pain.
TRP channels are implicated in the pathogenesis of numerous human diseases, including cancers, and
represent one of the most ardently pursued drug targets. Despite recent successes in TRP channel structure
determination, understanding of their genetic diversity, function and regulation is still far from being complete.
Such limited knowledge represents a critical barrier to devising therapeutic strategies based on TRP channel
regulation and to the progress in the rational drug design. We plan to study TRP channel structure and function
using a combination of different biophysical and biochemical methods. Our specific aims are: 1) establish
molecular bases of TRPV6 polymorphisms and disease variants, 2) determine structural mechanisms of TRPV6
inhibition, and 3) identify structural elements underlying similarities and difference in gating and regulation of
TRPV6 and other TRP channels. TRP channels are challenging targets for structure-functional studies because
they represent multimeric integral membrane proteins of a large size with typically low expression levels. To
achieve our goals, we will use a combination of structural and functional approaches, including modern cryo-
electron microscopy (cryo-EM), X-ray crystallography, protein engineering, Fluorescence-based Size Exclusion
Chromatography (FSEC), calcium imaging, fluorescent spectroscopy and electrophysiology. We will express
TRP channels, their mutants and genetic variants in eukaryotic cell lines, purify them using different membrane
mimetic systems, and determine cryo-EM and crystal structures in the presence of different stimuli. We will then
combine the nascent structural information with functional data to discern molecular mechanisms of TRP channel
gating, inhibition and regulation by Ca2+, temperature and lipids. Achieving our aims will significantly improve
understanding of TRP channel structure and function, resulting in a new dynamic template for theoretical
prediction, in silico fitting and chemical synthesis of new drugs.
项目摘要
瞬态受体电势(TRP)通道代表多峰细胞传感器,该传感器整合化学物质,
温度,机械应力和膜电压刺激,并将其转换为离子电流以调节
我们的视觉,听力,品味,气味和触摸感,并有助于温度和疼痛感知。
TRP通道与包括癌症在内的许多人类疾病的发病机理有关,
代表了最热心追求的药物靶标之一。尽管最近在TRP通道结构上取得了成功
确定,对它们的遗传多样性,功能和调节的理解仍然远非完整。
这种有限的知识代表了基于TRP渠道制定治疗策略的关键障碍
调节和对理性药物设计的进展。我们计划研究TRP通道结构和功能
结合不同的生物物理和生化方法。我们的具体目的是:1)建立
TRPV6多态性和疾病变异的分子碱基,2)确定TRPV6的结构机制
抑制作用和3)确定相似性的基础结构元素以及门控和调节的差异
TRPV6和其他TRP通道。 TRP通道是结构功能研究的挑战,因为
它们代表具有通常低表达水平的大尺寸的多聚体积分膜蛋白。到
实现我们的目标,我们将结合结构和功能的方法,包括现代的冷冻
电子显微镜(冷冻EM),X射线晶体学,蛋白质工程,基于荧光的尺寸排除
色谱(FSEC),钙成像,荧光光谱和电生理学。我们将表达
TRP通道,其突变体和真核细胞系中的遗传变异,使用不同的膜纯化它们
模拟系统,并在存在不同刺激的情况下确定冷冻EM和晶体结构。然后我们会
将新生的结构信息与功能数据结合在一起,以识别TRP通道的分子机制
Ca2+,温度和脂质的门控,抑制和调节。实现我们的目标将大大改善
了解TRP通道结构和功能,从而为理论带来了新的动态模板
预测新药的硅酸拟合和化学合成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Sobolevsky其他文献
Alexander Sobolevsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Sobolevsky', 18)}}的其他基金
Structural and functional principles of activation and regulation of the transient receptor potential channel TRPV3.
瞬时受体电位通道 TRPV3 激活和调节的结构和功能原理。
- 批准号:
10365295 - 财政年份:2022
- 资助金额:
$ 46.05万 - 项目类别:
Structural and functional principles of activation and regulation of the transient receptor potential channel TRPV3.
瞬时受体电位通道 TRPV3 激活和调节的结构和功能原理。
- 批准号:
10559520 - 财政年份:2022
- 资助金额:
$ 46.05万 - 项目类别:
Single-particle cryo-EM characterization of AMPA receptor functional states
AMPA 受体功能状态的单颗粒冷冻电镜表征
- 批准号:
9750158 - 财政年份:2018
- 资助金额:
$ 46.05万 - 项目类别:
Single-particle cryo-EM characterization of AMPA receptor functional states
AMPA 受体功能状态的单颗粒冷冻电镜表征
- 批准号:
10412995 - 财政年份:2018
- 资助金额:
$ 46.05万 - 项目类别:
Single-Particle Cryo-EM Characterization of AMPA Receptor Functional States
AMPA 受体功能状态的单粒子冷冻电镜表征
- 批准号:
10654933 - 财政年份:2018
- 资助金额:
$ 46.05万 - 项目类别:
Single-particle cryo-EM characterization of AMPA receptor functional states
AMPA 受体功能状态的单颗粒冷冻电镜表征
- 批准号:
9926319 - 财政年份:2018
- 资助金额:
$ 46.05万 - 项目类别:
Single-particle cryo-EM characterization of AMPA receptor functional states
AMPA 受体功能状态的单颗粒冷冻电镜表征
- 批准号:
9573053 - 财政年份:2018
- 资助金额:
$ 46.05万 - 项目类别:
Structure and function of Transient Receptor Potential channels
瞬时感受器电位通道的结构和功能
- 批准号:
9235633 - 财政年份:2017
- 资助金额:
$ 46.05万 - 项目类别:
Structure and Finction of AMPA subtype ionotropic glutamate receptors
AMPA 亚型离子型谷氨酸受体的结构和功能
- 批准号:
9091657 - 财政年份:2013
- 资助金额:
$ 46.05万 - 项目类别:
Structure and Finction of AMPA subtype ionotropic glutamate receptors
AMPA 亚型离子型谷氨酸受体的结构和功能
- 批准号:
8650439 - 财政年份:2013
- 资助金额:
$ 46.05万 - 项目类别:
相似国自然基金
黄杆菌科细菌藻类多糖降解功能的演化机制研究
- 批准号:32370006
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
浅水富营养化湖泊浮游藻类对底泥疏浚的响应过程模拟与机制解析
- 批准号:42371116
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
盐度动态对浮游藻类驱动农田汇水河沟甲烷排放的影响
- 批准号:52309043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自养/异养条件下单细胞藻类的絮凝/降解/收集问题驱动的动力学建模与理论和数值分析
- 批准号:12371481
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
河流藻类季节演替对致嗅副产物生成的影响机制及风险演化研究
- 批准号:42307102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structural and mechanistic basis of channelrhodopsin function
视紫红质通道功能的结构和机制基础
- 批准号:
10566779 - 财政年份:2023
- 资助金额:
$ 46.05万 - 项目类别:
Structural Mechanism for Gating of Mechanosensitive Channels
机械敏感通道门控的结构机制
- 批准号:
10688147 - 财政年份:2022
- 资助金额:
$ 46.05万 - 项目类别:
Learning principles from the pyrenoid, a phase-separated organelle
学习类核蛋白(一种相分离细胞器)的原理
- 批准号:
10322382 - 财政年份:2021
- 资助金额:
$ 46.05万 - 项目类别:
Learning principles from the pyrenoid, a phase-separated organelle
学习类核蛋白(一种相分离细胞器)的原理
- 批准号:
10544349 - 财政年份:2021
- 资助金额:
$ 46.05万 - 项目类别:
Using green algae to unravel the origins of genome architecture
利用绿藻揭示基因组结构的起源
- 批准号:
435173-2013 - 财政年份:2021
- 资助金额:
$ 46.05万 - 项目类别:
Discovery Grants Program - Individual