Discovery and development of Ku-targeted small molecule inhibitors: A novel mechanism of DNA-PK inhibition
Ku 靶向小分子抑制剂的发现和开发:DNA-PK 抑制的新机制
基本信息
- 批准号:10581526
- 负责人:
- 金额:$ 57.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-13 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAddressAdvanced DevelopmentAntineoplastic AgentsAutomobile DrivingBRCA1 geneBRCA2 geneBindingBiochemicalBiological AvailabilityBleomycinCancer ModelCellsCharacteristicsChemicalsChemistryChemotherapy and/or radiationCisplatinClinicalCombined Modality TherapyCoupledDNADNA BindingDNA DamageDNA Double Strand BreakDNA RepairDNA Sequence AlterationDNA-PKcsDNA-dependent protein kinaseDataDevelopmentDoseDouble Strand Break RepairDrug DesignDrug KineticsEtoposideGenerationsGeneticGenetic studyGenome StabilityHealthHumanIn VitroIonizing radiationKnowledgeLungMaintenanceMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of ovaryMediatingModelingModificationMolecularMolecular Mechanisms of ActionNonhomologous DNA End JoiningOutcomeOvarianPathway interactionsPatientsPharmaceutical ChemistryPharmaceutical PreparationsPharmacology StudyPhosphotransferasesPlayPropertyPublishingRadiationRadiation induced double strand breakReagentRegulationReportingResearchRoentgen RaysRoleSeriesSignal PathwaySignal TransductionStressStructureStructure-Activity RelationshipTherapeuticTherapeutic AgentsToxic effectanti-canceranti-cancer therapeuticcancer cellcancer geneticscancer therapyclinically relevantdesigndrug-like compoundearly phase clinical trialgenetic manipulationhomologous recombinationin vivoinhibitorinnovationmolecular targeted therapiesnanomolarnovelnovel therapeuticspharmacologicprotein kinase inhibitorrecombinational repairrepairedresponsesmall moleculesmall molecule inhibitorsynthetic lethal interactiontargeted agentuptake
项目摘要
The DNA-dependent protein kinase (DNA-PK) is a validated target for cancer therapeutics involved
in the DNA-damage response (DDR) and non-homologous end joining (NHEJ) double strand break (DSB)
repair pathways. Various anti-cancer therapeutic strategies, including ionizing radiation (IR) impart their
efficacy by inducing DNA DSBs. Both genetic and pharmacologic studies have demonstrated that modulating
the DDR and DSB repair pathways has a profound impact on the efficacy of DNA damaging therapeutic agents
supporting the premise of targeting DNA-PK in cancer therapy. Development of DNA-PK inhibitors thus far has
focused entirely on targeting the DNA-PKcs active site, three of which are currently in early phase clinical trials.
We have exploited the requirement for DNA-PK activation of binding to DNA termini via the Ku 70/80
heterodimer to identify small molecule Ku inhibitors that inhibit DNA-PK via a novel mechanism. Preliminary
data show that Ku-inhibitors abrogate DNA-PK catalytic activity at nanomolar concentrations and potentiate
cellular sensitivity to DSB-inducing therapeutics. We have also proven that the observed cellular effects are a
function of direct on-target Ku inhibition. Based on the rigorous published and preliminary data we
hypothesize that DNA-PK inhibition mediated by targeting Ku-DNA binding, will inhibit the DDR and
NHEJ pathways resulting in sensitization of cancer cells to DNA damaging anti-cancer agents. To
address this hypothesis, we propose three specific aims. In Aim 1 we will develop highly potent and selective
DNA-PK inhibitors by targeting the Ku-DNA interaction. Having established nanomolar inhibitors, chemistry
efforts will focus on optimizing the physicochemical and pharmacokinetic properties to increase cellular uptake
and bioavailability while retaining excellent potency and selectivity. In Aim 2 we will determine the molecular
mechanism of action (MOA) of Ku inhibitors and elucidate how chemical inhibition of Ku impacts the cellular
DDR and repair pathways. In Aim 3 we will interrogate how modulation of DSB repair via HRR and DDR
signaling due to Ku inhibition impacts anticancer efficacy alone and in combination therapy in clinically relevant
models of lung and ovarian cancer. We will also assess the impact of common cancer genetic mutations in
genome stability and maintenance pathways (including BRCA1 and BRCA2) towards exploiting synthetic lethal
interactions to enhance drug and radiation efficacy. Completion of these studies will provide essential
information for the continued discovery and development of novel Ku-targeted DNA-PK inhibitors. The impact
of this research thus extends beyond the generation of new knowledge, reagents and models to provide new
molecularly targeted treatment options for a wide array of cancers that are currently difficult to treat effectively.
DNA依赖性蛋白激酶(DNA-PK)是涉及癌症治疗剂的验证靶标
在DNA破坏响应(DDR)和非同源末端连接(NHEJ)双链断裂(DSB)中
维修途径。各种抗癌治疗策略,包括电离辐射(IR)赋予他们
通过诱导DNA DSB的功效。遗传学和药理学研究都表明调节
DDR和DSB修复途径对DNA破坏治疗剂的功效有深远的影响
支持靶向DNA-PK在癌症治疗中的前提。到目前为止的DNA-PK抑制剂的开发已有
完全专注于靶向DNA-PKCS活性位点,其中三个目前正在早期临床试验中。
我们利用了通过KU 70/80的DNA-PK激活与DNA末端结合的要求
杂化二聚体以鉴定通过新机制抑制DNA-PK的小分子KU抑制剂。初步的
数据表明,KU抑制剂在纳摩尔浓度下消除DNA-PK催化活性并增强
细胞对DSB诱导疗法的敏感性。我们还证明,观察到的细胞效应是
直接靶向KU抑制的功能。根据严格发布和初步数据
假设通过靶向KU-DNA结合介导的DNA-PK抑制作用将抑制DDR和
NHEJ途径导致癌细胞对DNA损害抗癌药的敏感性。到
解决这一假设,我们提出了三个具体目标。在AIM 1中,我们将发展高度有力和选择性
DNA-PK抑制剂通过靶向KU-DNA相互作用。建立纳摩尔抑制剂后,化学
努力将着重于优化物理化学和药代动力学特性以增加细胞摄取
和生物利用度,同时保持出色的效力和选择性。在AIM 2中,我们将确定分子
KU抑制剂的作用机理(MOA),并阐明了KU化学抑制作用如何影响细胞
DDR和修复途径。在AIM 3中,我们将询问如何通过HRR和DDR调制DSB修复
由于KU抑制作用而引起的信号会影响抗癌功效,并且在临床相关的联合治疗中
肺癌和卵巢癌模型。我们还将评估常见癌症基因突变对
基因组稳定性和维护途径(包括BRCA1和BRCA2)用于利用合成致死
相互作用以增强药物和辐射功效。这些研究的完成将提供必不可少的
持续发现和开发新型KU靶向DNA-PK抑制剂的信息。影响
因此,这项研究超出了新知识,试剂和模型的产生,以提供新的知识和模型
各种癌症的分子靶向治疗方案,这些癌症目前难以有效治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Navnath S Gavande其他文献
Navnath S Gavande的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Navnath S Gavande', 18)}}的其他基金
Discovery and development of Ku-targeted small molecule inhibitors: A novel mechanism of DNA-PK inhibition
Ku 靶向小分子抑制剂的发现和开发:DNA-PK 抑制的新机制
- 批准号:
10358629 - 财政年份:2020
- 资助金额:
$ 57.28万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An enzyme-based assay for the detection of acetaldehyde-protein adducts
用于检测乙醛-蛋白质加合物的酶测定法
- 批准号:
10760201 - 财政年份:2023
- 资助金额:
$ 57.28万 - 项目类别:
Discovery of inhibitors of EBV lytic cycle inducing protein ZTA for therapeutic development
发现 EBV 裂解周期诱导蛋白 ZTA 抑制剂用于治疗开发
- 批准号:
10384443 - 财政年份:2022
- 资助金额:
$ 57.28万 - 项目类别:
Discovery of inhibitors of EBV lytic cycle inducing protein ZTA for therapeutic development
发现 EBV 裂解周期诱导蛋白 ZTA 抑制剂用于治疗开发
- 批准号:
10684643 - 财政年份:2022
- 资助金额:
$ 57.28万 - 项目类别:
Elucidating Angular Protein Motion using Kinetic Ensemble Refinement
使用动力学系综细化阐明角蛋白运动
- 批准号:
10203376 - 财政年份:2021
- 资助金额:
$ 57.28万 - 项目类别:
Molecular characterization of biliverdin IXbeta reductase
胆绿素 IXbeta 还原酶的分子表征
- 批准号:
10210076 - 财政年份:2021
- 资助金额:
$ 57.28万 - 项目类别: