Preclinical discovery of novel farnesyltransferase inhibitors for the treatment of Alzheimer's disease and related tauopathies
用于治疗阿尔茨海默病和相关 tau蛋白病的新型法尼基转移酶抑制剂的临床前发现
基本信息
- 批准号:10573238
- 负责人:
- 金额:$ 89.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffinityAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAmericanAmyloid beta-ProteinAnimal ModelArtificial IntelligenceAttenuatedBackBehavioralBindingBiological AssayBrainChemicalsClinicClinicalClinical TrialsComputer AssistedCrystallizationCustomDataDementiaDiseaseDisease ProgressionDoseDrug DesignDrug KineticsDrug TargetingElementsFamilyFarnesyl Transferase InhibitorFarnesylation InhibitionGoalsGuanosine Triphosphate PhosphohydrolasesHumanHuman DevelopmentImpaired cognitionKnowledgeLaboratoriesLeadLegal patentLibrariesLonafarnibLongevityLongitudinal StudiesLysosomesMalignant NeoplasmsMediatingMusNeurodegenerative DisordersNeurofibrillary TanglesPathologicPathologyPathway interactionsPatientsPharmaceutical PreparationsPharmacodynamicsPharmacotherapyProcessPropertyProteinsPublic HealthPublishingPumpReportingResearchResearch DesignRiskRoentgen RaysSenile PlaquesSmall Interfering RNAStructureTauopathiesTestingTherapeuticTranslatingValidationWorkaging populationanalogartificial intelligence algorithmartificial intelligence methodcancer therapychemical propertydesigndrug candidatedrug discoveryeffective therapyefficacy studyefficacy testingefflux pumpexperienceextracellularfarnesylationfunctional grouphigh throughput screeningin silicoin vivoinhibitorinnovationlead optimizationmouse modelneural networkneurofibrillary tangle formationneuron lossneuropathologynew therapeutic targetnovelpharmacodynamic modelpharmacologicpre-clinicalpreclinical evaluationpreventprotein degradationproteostasissmall moleculesmall molecule librariestau Proteinstau aggregationtau mutationvirtual
项目摘要
PROJECT SUMMARY
Alzheimer’s disease (AD) is a fatal disease that currently afflicts almost six million Americans. With an
aging population, we risk a public health crisis by 2050, unless effective treatments are identified. Despite
extensive research, there are currently no drugs that slow or alter the course of disease. AD is defined by the
presence of β-amyloid (Aβ) plaques and intraneuronal tau inclusions called neurofibrillary tangles (NFTs) in
the brain. Drug candidates that reduce Aβ plaques have not, yet, been shown to have clinical benefit, and
growing data suggests that it may be more important to target NFTs over Aβ plaques to prevent cognitive
decline. Recently, the macroautophagy-lysosomal pathway of protein degradation has emerged as a
compelling target for reducing pathogenic tau in the brain. Our hypothesis is that increasing the rate of tau
degradation will reduce tau levels and stop, or greatly slow, the rate of tau aggregation. We recently
discovered a novel pathway to accomplish this objective. Inhibiting the farnesylation of Rhes, a GTPase
protein in the Ras family, activates the lysosome and results in the selective degradation of pathological
tau. Confirmation of the therapeutic hypothesis was achieved by administering a farnesyltransferase inhibitor
(FTI) in a mouse model of tauopathy, which reduced tau pathology and attenuated behavioral abnormalities in
the mice.
Known FTIs are not suitable for human development as CNS drugs. Optimized for cancer indications,
they are efficiently pumped out of the brain by efflux proteins. We propose a three-pronged approach to identify
chemical matter that can reach pharmacologically significant and dose-proportional brain levels. For two of the
known inhibitors, L-778,123 and lonafarnib, we will make strategic changes to the structures, eliminating
functional groups that serve as recognition substrates for the efflux pumps. Concurrently, we will initiate a high-
throughput screen of a chemical library with chemical properties consistent with known CNS drugs. As a third
step, we will engage in a multi-million compound artificial intelligence-based virtual screen with AtomWise to
identify novel FTIs. By generating x-ray co-crystal structures of the most promising hits and using computer-
aided drug design, we plan to accelerate the process of hit validation, lead discovery, and optimization to
identify small molecule drug candidates. We will advance inhibitors to an in vivo pharmacodynamic model
and select compounds with linear pharmacokinetic/pharmacodynamic (PK/PD) relationships that can be
advanced into the clinic. Three of the top compounds will be tested for efficacy in a tauopathy animal model
using doses derived from the PK/PD relationship. Short-term studies will identify compounds that reduce all
pathogenic tau species. The most efficacious compound will be moved into long-term dosing studies to
evaluate life-span extension and reduction in NFT formation.
项目摘要
阿尔茨海默氏病(AD)是一种致命疾病,目前遭受了近600万美国人的困扰。与
人口老龄化,除非确定有效的治疗,否则我们可能会在2050年发生公共卫生危机。尽管
广泛的研究,目前尚无缓慢或改变疾病进程的药物。广告由
β-淀粉样蛋白(Aβ)斑块和神经元内tau包含在称为神经原纤维缠结(NFTS)中的存在
大脑。尚未证明减少Aβ斑块的候选药物尚未具有临床益处,并且
增长的数据表明,将NFT靶向Aβ斑块以防止认知可能更重要
衰退。最近,蛋白质降解的大自源性溶酶体途径已成为一种
降低大脑病原性TAU的诱人目标。我们的假设是提高tau的速率
降解将降低tau的水平,并停止或大大减慢tau聚合的速率。我们最近
发现了实现这一目标的新颖途径。抑制GTPase Rhes的Farnesylation
RAS家族中的蛋白质,激活溶酶体并导致病理的选择性降解
tau。通过给予Farnesylsylansferase抑制剂来确认治疗假设
(FTI)在小鼠tauopathy模型中,该模型降低了tau病理的病理和减弱的行为异常
老鼠。
已知的FTI不适合作为中枢神经系统药物的人类发展。针对癌症的适应症进行了优化
它们通过外排蛋白有效地从大脑中抽出。我们提出了一种三管齐下的方法来识别
化学物质可以达到药物意义和剂量 - 偏好的大脑水平。对于两个
已知的抑制剂L-778,123和Lonafarnib,我们将对结构进行战略性更改,消除
用作排出泵的识别底物的官能团。同时,我们将启动一个高
具有与已知中枢神经系统药物一致的化学特性的化学特性的吞吐量屏幕。三分之一
步骤,我们将与Atomwise的数百万复合人工智能屏幕一起进行
识别新颖的FTI。通过生成最有前途的命中的X射线共晶结构,并使用计算机 -
辅助药物设计,我们计划加快命中验证,铅发现和优化的过程
鉴定小分子候选物。我们将使抑制剂推向体内药效学模型
并选择具有线性药代动力学/药效学(PK/PD)关系的化合物
进入诊所。三种顶部化合物将在陶氏动物模型中测试效率
使用从PK/PD关系得出的剂量。短期研究将确定减少所有的化合物
致病性tau物种。最有效的化合物将转移到长期的给药研究中
评估NFT形成的寿命延伸和减少。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven H Olson其他文献
Steven H Olson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven H Olson', 18)}}的其他基金
Preclinical discovery of novel farnesyltransferase inhibitors for the treatment of Alzheimer's disease and related tauopathies
用于治疗阿尔茨海默病和相关 tau蛋白病的新型法尼基转移酶抑制剂的临床前发现
- 批准号:
10367882 - 财政年份:2022
- 资助金额:
$ 89.46万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Anti-medin immunotherapy for vascular aging and related dementias
针对血管老化和相关痴呆的抗 Medin 免疫疗法
- 批准号:
10724869 - 财政年份:2023
- 资助金额:
$ 89.46万 - 项目类别:
CD98hc Brain Shuttles for Delivering Off-the-shelf Neuroprotective Antibodies in Alzheimer's Disease
CD98hc 脑穿梭机为阿尔茨海默病提供现成的神经保护抗体
- 批准号:
10566062 - 财政年份:2023
- 资助金额:
$ 89.46万 - 项目类别:
Developing therapeutic antibodies for Alzheimer's disease
开发阿尔茨海默病的治疗抗体
- 批准号:
10821560 - 财政年份:2023
- 资助金额:
$ 89.46万 - 项目类别:
Determining the mechanisms of the protective APOE3ch variant on Alzheimer's Disease pathologies
确定保护性 APOE3ch 变体对阿尔茨海默氏病病理的机制
- 批准号:
10750905 - 财政年份:2023
- 资助金额:
$ 89.46万 - 项目类别:
Tackling Multifaceted Drug Design Problems with Lambda Dynamics Based Technologies
利用基于 Lambda Dynamics 的技术解决多方面的药物设计问题
- 批准号:
10709879 - 财政年份:2022
- 资助金额:
$ 89.46万 - 项目类别: