Next-generation, pathway-specific, polygenic risk scores
下一代、特定途径、多基因风险评分
基本信息
- 批准号:10570896
- 负责人:
- 金额:$ 63.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Adverse effectsBasic ScienceBiochemicalBiochemical PathwayBiological ProcessBiomedical ResearchBipolar DisorderBody mass indexClinicalClinical ResearchClinical TrialsComplexComputer softwareCustomDataDiagnosticDiseaseDisease susceptibilityEnvironmentEpigenetic ProcessEtiologyFailureFormulationFutureGenerationsGeneticGenetic DiseasesGenetic Predisposition to DiseaseGenetic RiskGenomicsGenotype-Tissue Expression ProjectGoalsHumanIn VitroIndividualIntuitionLinkLocationMental disordersModelingMultiomic DataPathway interactionsPhenotypePlayPopulationPreventionProductionProxyResearchResearch PersonnelResourcesRiskRoleRouteRunningSamplingSchizophreniaStratificationSubgroupSymptomsTestingTimeVariantcomputerized toolsdisorder riskepigenomefunctional genomicsgenome wide association studygenome-widehigh risk populationindividualized preventioninnovationinsightmultiple omicsnew therapeutic targetnext generationnovel strategiespatient stratificationpatient subsetspersonalized medicinepersonalized therapeuticpolygenic risk scoreportabilityprecision medicineprototyperare variantrisk variantstatistical and machine learningsuccesstooltraittranscriptometreatment responseuser-friendly
项目摘要
PROJECT SUMMARY
The key appeal of polygenic risk scores (PRS) is the provision of individual-level estimates of genetic liability to
complex disease. These proxies of genetic liability enable a raft of applications across clinical and basic research
settings. However, while PRS are set to play a pivotal role in the future of biomedical research, their present
formulation is suboptimal since it fails to directly account for substructure in genetic disease risk.
The overarching goal of our proposal is to introduce a new generation of pathway-specific PRS, informed by
biological function. Rather a single genome-wide PRS for each individual, they will have a set of k PRS over k
pathways. Pathways will be defined according to multiscale integration of ‘omics data, exploiting co-expression
networks, the transcriptome and the epigenome. The key deliverable from this project will be the production of a
powerful and comprehensive pathway-specific PRS computational tool, PRSet, informed by biological function.
The rationale is that PRS calculated for individuals by aggregating the effects of all risk variants genome-wide,
results in a loss of vital individual-level information. Providing pathway-specific estimates of genetic liability,
computed in a scalable, statistically rigorous way, informed by latest multi-omic data, could enable researchers
to better decompose heterogenous complex disease, identify key pathways that explain overlap or
differences among disorders, and explain problems of portability of PRS between and within populations.
Applying our pathway-specific PRS tool, we seek to stratify patients into more homogenous subgroups by their
liability over key pathways. We will use PRSet for stratification in three ways: (i) stratifying within SCZ/BiP, testing
if liability over different pathways forms multiple routes to disease, (ii) differentiating between SCZ and BiP, testing
if key pathways differentiate these highly overlapping disorders, (iii) testing whether variation in treatment
response can be explained by pathway liability. Such stratification could help explain past successes, failures
and adverse-effects in clinical trials, and provide new therapeutic targets tailored to subsets of patients.
Our proposal is significant because the burgeoning application of PRS means that any advance in the PRS
approach will have immediate, high impact across psychiatric research. Pathway-specific PRS could open-up
routes to hypotheses that cannot be answered by genome-wide PRS. If PRSet reveals that genetic liability is
more stratified than presently modelled, then this would call for a focus on pathways and their multi-omic
integration, paving a new path towards precision medicine.
Our proposal is innovative because we develop the first pathway-specific, function-informed, PRS tool, we
propose that disease risk may be influenced by multiple genetic liabilities, and we stratify patients according to
pathway-specific genetic risk for the first time.
In conclusion, our proposal delivers a tool for the field to perform powerful pathway PRS analyses, better
understand genetic liability to disease, and which may offer a more direct route to precision medicine.
项目概要
多基因风险评分(PRS)的主要吸引力在于提供个体水平的遗传倾向估计
这些遗传责任的代理在临床和基础研究中具有广泛的应用。
然而,虽然 PRS 将在未来的生物医学研究中发挥关键作用,但它们目前的情况。
该公式并不理想,因为它无法直接解释遗传病风险的子结构。
我们提案的总体目标是引入新一代特定路径的 PRS,
每个个体都有一个单一的全基因组 PRS,而是一组超过 k 个 PRS。
途径将根据组学数据的多尺度整合、利用共表达来定义。
该项目的关键成果将是产生一个网络、转录组和表观基因组。
强大而全面的特定途径 PRS 计算工具 PRSet,以生物学功能为基础。
基本原理是 PRS 通过汇总全基因组范围内所有风险变异的影响来计算个体,
导致重要的个体水平信息的丢失,提供遗传责任的特定路径估计,
以可扩展、严格的方式计算,并根据最新的多组学数据,可以使研究人员
为了更好地分解异质复杂疾病,确定解释重叠或的关键途径
疾病之间的差异,并解释 PRS 在人群之间和人群内的可移植性问题。
应用我们的路径特异性 PRS 工具,我们寻求根据患者的情况将其分为更同质的亚组
我们将使用 PRSet 以三种方式进行分层:(i) 在 SCZ/BiP 内分层、测试。
如果不同途径的责任形成多种疾病途径,(ii) 区分 SCZ 和 BiP,测试
如果关键途径能够区分这些高度重叠的疾病,(iii) 测试治疗是否存在差异
反应可以通过路径责任来解释,这种分层有助于解释过去的成功和失败。
和临床试验中的不良反应,并提供针对患者亚群的新治疗靶点。
我们的建议意义重大,因为 PRS 的迅速发展意味着 PRS 的任何进步
该方法将对精神病学研究产生直接、重大的影响。
如果 PRSet 揭示了遗传责任,则可以得出无法通过全基因组 PRS 回答的假设。
比目前的模型更加分层,那么这就需要关注路径及其多组学
整合,开辟精准医疗新路径。
我们的建议是创新的,因为我们开发了第一个针对特定途径、功能信息的 PRS 工具,我们
提出疾病风险可能受到多种遗传倾向的影响,我们根据以下因素对患者进行分层
首次发现途径特异性遗传风险。
总之,我们的建议为该领域提供了一个工具,可以更好地执行强大的路径 PRS 分析
了解疾病的遗传倾向,这可能为精准医学提供更直接的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Francis O'Reilly其他文献
Paul Francis O'Reilly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Francis O'Reilly', 18)}}的其他基金
BridgePRS: bridging the gap in polygenic risk scores between ancestries.
BridgePRS:缩小祖先之间多基因风险评分的差距。
- 批准号:
10737057 - 财政年份:2023
- 资助金额:
$ 63.63万 - 项目类别:
Next-generation, pathway-specific, polygenic risk scores
下一代、特定途径、多基因风险评分
- 批准号:
10361223 - 财政年份:2020
- 资助金额:
$ 63.63万 - 项目类别:
相似国自然基金
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
极端高温环境流动沸腾技术的基础科学问题及关键材料研究
- 批准号:52333015
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
耐高温高电压SiC功率器件灌封材料的多性能协同中的基础科学问题研究
- 批准号:52272001
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
轻量化低脉动高可靠直驱式永磁电机系统基础科学问题与关键技术研究
- 批准号:52237002
- 批准年份:2022
- 资助金额:269 万元
- 项目类别:重点项目
含氮杂环配体聚合物结构精准调控与功能涂层材料表界面基础科学问题研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Next-generation, pathway-specific, polygenic risk scores
下一代、特定途径、多基因风险评分
- 批准号:
10361223 - 财政年份:2020
- 资助金额:
$ 63.63万 - 项目类别:
IND-enabling studies of the potent LpxC inhibitor LPC-233 as a novel antibiotic against Gram-negative pathogens
有效的 LpxC 抑制剂 LPC-233 作为抗革兰氏阴性病原体的新型抗生素的 IND 启用研究
- 批准号:
10011609 - 财政年份:2020
- 资助金额:
$ 63.63万 - 项目类别:
Discovery and Biological Signatures of Microbiome-Derived Xanthohumol Metabolites and their Role in Ameliorating Inflammatory Bowel Disease
微生物组衍生的黄腐酚代谢物的发现和生物学特征及其在改善炎症性肠病中的作用
- 批准号:
9789841 - 财政年份:2018
- 资助金额:
$ 63.63万 - 项目类别:
Discovery and Biological Signatures of Microbiome-Derived Xanthohumol Metabolites and their Role in Ameliorating Inflammatory Bowel Disease
微生物组衍生的黄腐酚代谢物的发现和生物学特征及其在改善炎症性肠病中的作用
- 批准号:
10237375 - 财政年份:2018
- 资助金额:
$ 63.63万 - 项目类别:
Discovery and Biological Signatures of Microbiome-Derived Xanthohumol Metabolites and their Role in Ameliorating Inflammatory Bowel Disease
微生物组衍生的黄腐酚代谢物的发现和生物学特征及其在改善炎症性肠病中的作用
- 批准号:
10472280 - 财政年份:2018
- 资助金额:
$ 63.63万 - 项目类别: