Identifying causal genetic variants and molecular mechanisms impacting mental health
识别影响心理健康的因果遗传变异和分子机制
基本信息
- 批准号:10571911
- 负责人:
- 金额:$ 61.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAcuteAffectAllelesAlzheimer&aposs DiseaseBiological AssayBiologyBrainBrain regionCatalogsCellsChromatinCollaborationsCommunitiesComputer softwareComputing MethodologiesDNA SequenceDataDatabasesDetectionDevelopmentDiseaseFutureGene ExpressionGene Expression RegulationGene FrequencyGenesGeneticGenetic DiseasesGenetic LoadGenetic RiskGenetic VariationGenotype-Tissue Expression ProjectHumanIndividualInfluentialsLearningLinkLinkage DisequilibriumMachine LearningMapsMasksMental HealthMental Health AssociationsMental disordersMethodsModelingMolecularMolecular DiseaseMusNational Human Genome Research InstituteNeurodevelopmental DisorderOrganoidsOutcomeParkinson DiseasePathologicPerformancePopulationQuantitative Trait LociReporterReproducibilityResearchResolutionResourcesRiskTissue SampleTissuesTrainingUncertaintyUntranslated RNAVariantWeightWorkbasebiobankbrain cellcausal variantcell typecomputational pipelinesdeep learning modeldisorder riskepigenomeepigenomicsexperimental studyfunctional genomicsgenetic variantgenome resourcegenome wide association studygenomic locusimprovedinsightmachine learning methodmachine learning modelnovelnovel strategiesopen datapolygenic risk scorepreventpublic health relevanceregression algorithmrisk predictionsuccesstherapy developmenttrait
项目摘要
Identifying how genetic variation leads to neurodevelopmental or psychiatric disorders provides new means to
study, predict, prevent and treat disease. Identifying the immediate molecular consequences of disease-
associated genetic variation has necessitated the development of large-scale, multi-tissue functional genomic
resources. Projects such as GTEx, Roadmap Epigenomics Project and PsychENCODE have combined
molecular QTL mapping and epigenomic maps in bulk tissues to interpret various disease-associated genetic
variants. However, few colocalizations between molecular QTLs and traits have been robustly identified and
few causal variants mapped. As tissues like the brain constitute 100s of cell-types, we hypothesize that
existing maps may mask the contributions of disease-associated variation in less-abundant cell types. One
extremely powerful approach to identify cell-type specific molecular effects and their relationship to genetic
diseases is through application of chromatin accessibility data – these data both allow inference of causal cell
types and provide base level resolution gene regulation. Our team has considerable expertise in connecting
GWAS to molecular functions and predicting causal variants through use of chromatin accessibility data. We
have additionally recently collaborated to generate a comprehensive, multi-individual map single cell ATAC-
seq map (scATAC-seq) of six different brain regions to detect causal cell types and predict causal variants.
This work has been recently demonstrated in our fine-mapping study of Alzheimer’s and Parkinson’s disease
(Corces et al, bioRxiv, 2020) but has not been systematically applied to mental health disorders. We propose
to develop statistical genetics and machine learning approaches that advance the use of scATAC-seq data to
connecting mental health GWAS loci to specific cell types, mechanisms and causal variants. In Aim 1, we will
assemble a pipeline that leverages region and cell type-specific scATAC-seq data to identify pathological cell
types for 100s of mental health and brain-related traits. We will also enhance the detection of cell-type specific
molecular mechanisms by extending and applying a novel GWAS/QTL colocalization approach. Throughout
these activities, variants will be validated using massively-parallel reporter assays (MPRA). In Aim 2, we will
develop sophisticated machine learning models that learn regulatory grammars and score variants across the
allele frequency spectrum. Predicted causal variants in GWAS loci will be further assessed with MPRAs in Aim
1 and applied in Aim 3. In Aim 3, we will demonstrate how improved detection of causal variants using our
single-cell informed models aids transferability of polygenic risk scores across populations.
We will provide open resources and reproducible computational methods and pipelines that integrate
single cell chromatin accessibility data from multiple brain regions. This will allow detection cell-type specific
genetic effects and pathological cell types in mental health GWAS, establish robust causal links between
variants, genes and disease, and improve prediction of disease risk.
确定遗传变异如何导致神经发育或精神疾病的新手段
研究,预测,预防和信任疾病。
相关的遗传变异哈斯需要开发大型多组织功能基因组
资源。
散装组织中的分子QTL映射和表观基因组图来解释各种疾病相关的遗传
然而,变异很少
很少有因果变体映射为诸如大脑征兵100的组织,我们假设
现有的MAS掩模在不多的细胞类型中与疾病相关的贡献。
鉴定细胞类型特异性分子效应以及与遗传的关系的极其强大的方法
疾病是通过应用染色质可及性数据 - 这些数据BOTA都允许推断因果细胞
类型并提供基础水平分辨率基因调控。
通过使用染色质访问性数据来预测分子函数的GWA和因果变异
最近还合作生成
六个不同大脑区域的SEQ MAP(SCATAC-SEQ)检测Cassal细胞细胞类型并预测因果变异。
在我们对阿尔茨海默氏病和帕金森氏病的精细映射研究中,这项工作已得到了证明
(Corces等人,Biorxiv,2020年),但我们建议的是精神疾病
开发统计遗传学和机器学习将SCATAC-SEQ数据接近
将心理健康GWAS基因座连接到特定的细胞类型,机制和因果关系。
组装利用区域和细胞类型特异性SCATAC-SEQ数据识别病理细胞的管道
对于100秒的心理健康和与大脑相关的特征。
分子机制通过扩展和应用无新颖的GWAS/QTL共定位方法。
这些活动将使用大量并行的记者分析(MPRA)进行有效添加。
开发复杂的机器学习模型,以学习常规语法和跨你的评分变体
等位基因频谱。
1并应用于AIM3。在AIM 3中,我们将证明如何使用我们的因果变异的检测
单细胞知情的模型有助于跨种群的多基因风险评分的转移性。
我们将提供开放的资源和声誉的方法和管道来集成
单细胞染色质的可访问性数据来自Multighipe Brain区域。
心理健康中的遗传效应和病理细胞类型
变体,基因和疾病,并改善疾病风险的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anshul Kundaje其他文献
Anshul Kundaje的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anshul Kundaje', 18)}}的其他基金
Multi-Omics DACC: The Data Analysis and Coordination Center for the collaborative multi-omics for health and disease initiative
多组学 DACC:健康和疾病协作多组学计划的数据分析和协调中心
- 批准号:
10744561 - 财政年份:2023
- 资助金额:
$ 61.6万 - 项目类别:
A Comprehensive Genomic Community Resource of Transcriptional Regulation
转录调控的综合基因组群落资源
- 批准号:
10411262 - 财政年份:2022
- 资助金额:
$ 61.6万 - 项目类别:
A Comprehensive Genomic Community Resource of Transcriptional Regulation
转录调控的综合基因组群落资源
- 批准号:
10842047 - 财政年份:2022
- 资助金额:
$ 61.6万 - 项目类别:
A Comprehensive Genomic Community Resource of Transcriptional Regulation
转录调控的综合基因组群落资源
- 批准号:
10625529 - 财政年份:2022
- 资助金额:
$ 61.6万 - 项目类别:
Identifying causal genetic variants and molecular mechanisms impacting mental health
识别影响心理健康的因果遗传变异和分子机制
- 批准号:
10380573 - 财政年份:2021
- 资助金额:
$ 61.6万 - 项目类别:
Predicting context-specific molecular and phenotypic effects of genetic variation through the lens of the cis-regulatory code
通过顺式调控密码的视角预测遗传变异的特定背景分子和表型效应
- 批准号:
10659170 - 财政年份:2021
- 资助金额:
$ 61.6万 - 项目类别:
Predicting context-specific molecular and phenotypic effects of genetic variation through the lens of the cis-regulatory code
通过顺式调控密码的视角预测遗传变异的特定背景分子和表型效应
- 批准号:
10297562 - 财政年份:2021
- 资助金额:
$ 61.6万 - 项目类别:
Predicting context-specific molecular and phenotypic effects of genetic variation through the lens of the cis-regulatory code
通过顺式调控密码的视角预测遗传变异的特定背景分子和表型效应
- 批准号:
10474459 - 财政年份:2021
- 资助金额:
$ 61.6万 - 项目类别:
Multi-omic functional assessment of novel AD variants using high-throughput and single-cell technologies
使用高通量和单细胞技术对新型 AD 变体进行多组学功能评估
- 批准号:
10684210 - 财政年份:2021
- 资助金额:
$ 61.6万 - 项目类别:
Multi-omic functional assessment of novel AD variants using high-throughput and single-cell technologies
使用高通量和单细胞技术对新型 AD 变体进行多组学功能评估
- 批准号:
10436207 - 财政年份:2021
- 资助金额:
$ 61.6万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
利多卡因通过Nav1.8通道调控白介素31表达影响特应性皮炎急性瘙痒的机制
- 批准号:82373490
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
超急性期免疫表征影响脑卒中预后研究
- 批准号:
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:
eIF2α/ATF3通路调控CPT1α影响线粒体稳态在急性肾损伤慢性化中的机制研究
- 批准号:82300838
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the role of trained immunity in kidney transplant patients
阐明训练有素的免疫力在肾移植患者中的作用
- 批准号:
10642596 - 财政年份:2023
- 资助金额:
$ 61.6万 - 项目类别:
Defining the impact of cannabinoids on the HIV reservoir in humanized mice
确定大麻素对人源化小鼠 HIV 储存库的影响
- 批准号:
10814024 - 财政年份:2023
- 资助金额:
$ 61.6万 - 项目类别:
Cell-type specific molecular and functional analyses to target dorsal horn pain circuitry in mice and non-human primates
针对小鼠和非人类灵长类动物背角疼痛回路的细胞类型特异性分子和功能分析
- 批准号:
10863324 - 财政年份:2023
- 资助金额:
$ 61.6万 - 项目类别:
Resolvin receptor signaling in trigeminal sensory neurons
三叉神经感觉神经元中的 Resolvin 受体信号传导
- 批准号:
10738862 - 财政年份:2023
- 资助金额:
$ 61.6万 - 项目类别:
Opioid-Induced Epigenetic Mechanisms in Glaucoma
阿片类药物诱导的青光眼表观遗传机制
- 批准号:
10563745 - 财政年份:2023
- 资助金额:
$ 61.6万 - 项目类别: