Linking GWAS variants to function with single-cell pooled CRISPR screens
将 GWAS 变体与单细胞 CRISPR 筛选结合起来发挥作用
基本信息
- 批准号:10571493
- 负责人:
- 金额:$ 10.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-16 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Automobile DrivingBiological AssayBiologyBloodBone DensityBone DiseasesCRISPR screenCatalogsCell modelCell surfaceCellsClustered Regularly Interspaced Short Palindromic RepeatsCodeCommittee MembersComplexComplex Genetic TraitCytosineDataDevelopmentDiseaseDrug TargetingEducational process of instructingEnvironmentEpigenetic ProcessErythroid Progenitor CellsFoundationsGene ExpressionGene Expression RegulationGenesGenetic EngineeringGenetic ResearchGenomeGenome engineeringGrantHaplotypesHematological DiseaseHumanHuman GeneticsInterdisciplinary StudyK-562LeadLinkLinkage DisequilibriumLiteratureLocationMachine LearningMapsMeasurementMentorsMentorshipMethodsModelingMutationNew YorkNucleotidesOsteoblastsOsteoporosisPhasePhenotypePositioning AttributeProteinsRegulatory ElementResearchResearch Project GrantsSelection CriteriaSignal TransductionStatistical MethodsTestingTrainingTraining ProgramsUntranslated RNAVariantWritingbase editingbase editorbonebone cellcareercausal variantcell typeflexibilityfunctional genomicsgenetic associationgenetic variantgenome wide association studygenomic dataimprovedinsightjob marketmethod developmentmineralizationmultimodalitynetwork dysfunctionnew therapeutic targetnovelprogramssingle cell sequencingstudent mentoringsymposiumtherapeutic candidatetherapeutic targettrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Genome-wide association studies (GWAS) have identified thousands of common and rare genetic variants
associated with complex traits and common diseases. Most variants map to the 98% of the genome that is
noncoding, with their target genes or function largely unknown. This is the variant-to-function problem (V2F), and
solving it remains a major hurdle in human genetics research. To help solve V2F, I propose to develop modular
workflows combining GWAS variant prioritization methods and pooled single-cell CRISPR screens for target
gene identification. I have developed an integrative approach combining highly polygenic blood trait GWASs and
pooled single-cell CRISPR inhibition (CRISPRi) screens in a human erythroid progenitor cell model (K562), to
identify target genes: Systematic Targeting and Inhibition of Noncoding GWAS loci with single-cell sequencing
(STING-seq). STING-seq can functionally dissect multiple GWAS loci in a massively parallel fashion, identifying
target genes in cis as well as trans-regulatory networks. Here, I will develop STING-seq further and examine its
generalizability for other GWAS traits and their cell models. First, I will expand STING-seq with precise variant
insertion, developing base editing STING-seq (Bee-STING) for high-throughput measurements of GWAS variant
effects on target genes and regulatory networks. Second, I will develop modular workflows for GWAS variant
prioritization for STING-seq, targeting sets of variants with distinct selection criteria to increase STING-seq’s
target gene and regulatory network discovery rate. Third, I will focus STING-seq on new GWAS traits and cell
models to examine its generalizability, first piloting STING-seq for another highly polygenic complex trait, bone
mineral density, with a human osteoblast cell model (hFOB). In the long-term, these aims will help solve V2F for
human genetics research, as their continued development and application will improve our understanding of how
GWAS variants causally influence complex traits and common diseases. I have a comprehensive training plan
in place with my primary mentors, Dr. Neville Sanjana (genome engineering) and Dr. Tuuli Lappalainen (gene
regulation), my mentorship committee members, Dr. David Knowles (machine learning), Dr. Aravinda
Chakravarti (human genetics), Dr. Charles Farber (bone biology), and my collaborator Dr. Eugene Katsevich
(statistical methods). This plan will continue my training in dissecting GWAS variant function with multiple
computational and experimental approaches, along with additional training in grant writing, mentoring students,
teaching courses, and presenting at research conferences. The full mentorship committee will direct me to
pertinent literature, offer advice on my research program, and provide guidance as I navigate the academic job
market. The New York Genome Center is the ideal training location for me, given its cutting-edge facilities,
plentiful opportunities for career and intellectual development, and collaborative research environment. Upon
completion of this training program, I will be well-positioned to lead my own interdisciplinary research lab and
become a leader in the fields of human complex traits genetics and genome engineering.
项目摘要/摘要
全基因组关联研究(GWAS)已经确定了数千种常见和罕见的遗传变异
与复杂的特征和常见疾病有关。大多数变体映射到98%的基因组
非编码,其目标基因或功能在很大程度上未知。这是变体到功能问题(V2F),并且
解决它仍然是人类遗传学研究的重大障碍。为了帮助解决V2F,我建议开发模块化
结合GWAS变体优先级方法和目标的单细胞CRISPR屏幕的工作流程
基因鉴定。我已经开发了一种结合高度多基因的血液特质gwass和的综合方法
人类红细胞祖细胞模型(K562)中的汇总单细胞CRIS抑制(CRISPRI)屏幕
识别靶基因:使用单细胞测序的非编码GWAS基因座的系统靶向和抑制
(sting-seq)。 Sting-seq可以以大规模平行的方式在功能上剖析多个GWAS基因座,从而识别
靶基因以及跨调节网络中的靶基因。在这里,我将进一步开发sting-seq并检查它
其他GWAS性状及其细胞模型的概括性。首先,我将使用精确变体扩展sting-seq
插入,开发基础编辑刺激序言(蜜蜂),用于GWAS变体的高通量测量
对目标基因和调节网络的影响。其次,我将开发GWAS变体的模块化工作流程
sting-seq的优先级,针对具有不同选择标准的变体集以增加sting-seq
靶基因和监管网络发现率。第三,我将把Sting-Seq集中在新的GWAS特征和细胞上
检查其推广性的模型,首先是针对另一个高度多基因复杂性状的刺激性seq
矿物质密度,具有人类成骨细胞模型(HFOB)。从长远来看,这些目标将帮助解决V2F
人类遗传学研究,因为它们的持续发展和应用将提高我们对
GWAS变体因果影响复杂的特征和常见疾病。我有一个全面的培训计划
与我的主要导师Neville Sanjana博士(基因组工程)和Tuuli Lappalain博士(Gene)
法规),我的导师委员会成员,大卫·诺尔斯(David Knowles)(机器学习),阿拉文达(Aravinda)博士
Chakravarti(人类遗传学),Charles Farber博士(骨骼生物学)和我的合作者Eugene Katsevich博士
(统计方法)。该计划将继续我的培训,以剖析多个GWAS变体功能
计算和实验方法,以及授予写作,心理学生的其他培训,
教学课程,并在研究会议上介绍。完整的巡回委员会将指导我
相关文献,在我的研究计划中提供建议,并在我浏览学术工作时提供指导
市场。鉴于其尖端设施,纽约基因组中心是我的理想培训地点
充足的职业和智力发展和协作研究环境的机会。之上
完成该培训计划的完成,我将有良好的位置领导自己的跨学科研究实验室和
成为人类复杂性状遗传学和基因组工程领域的领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Allan Morris其他文献
John Allan Morris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
冬虫夏草抗菌肽的序列测定及其生物学功能研究
- 批准号:81803848
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于同位素稀释质谱技术的多酚类物质生物学标志物的测定研究
- 批准号:81301487
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
关节软骨损伤及修复生物学表达及影像定量测定的基础研究
- 批准号:81171312
- 批准年份:2011
- 资助金额:56.0 万元
- 项目类别:面上项目
登革病毒不同毒株重要生物学特性的研究及全基因序列的测定
- 批准号:30360101
- 批准年份:2003
- 资助金额:18.0 万元
- 项目类别:地区科学基金项目
PmDNT生物学活性测定及其在猪AR发病中的作用
- 批准号:39170586
- 批准年份:1991
- 资助金额:3.5 万元
- 项目类别:面上项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 10.56万 - 项目类别:
Targeting epigenetic machinery to overcome myeloid cell-mediated resistance to anti-PD-1 therapy in GBM
靶向表观遗传机制克服 GBM 中骨髓细胞介导的抗 PD-1 治疗耐药性
- 批准号:
10634277 - 财政年份:2023
- 资助金额:
$ 10.56万 - 项目类别:
Decoding the epigenetic landscape that delineates T cell homeostatic proliferation from uncontrolled growth”
解码表观遗传景观,描绘 T 细胞稳态增殖与不受控制的生长 –
- 批准号:
10644128 - 财政年份:2023
- 资助金额:
$ 10.56万 - 项目类别:
Identification of Genetic and Molecular Bases of Derived Phenotypes in Primate Brain Development
灵长类动物大脑发育中衍生表型的遗传和分子基础的鉴定
- 批准号:
10841947 - 财政年份:2023
- 资助金额:
$ 10.56万 - 项目类别:
Modulation of epigenetic programming of tissue resident macrophage lineages to impact HIV-1 infection, maintenance, and persistence.
调节组织驻留巨噬细胞谱系的表观遗传编程以影响 HIV-1 感染、维持和持久性。
- 批准号:
10675934 - 财政年份:2023
- 资助金额:
$ 10.56万 - 项目类别: