High resolution profiling of cellular communities in the tumor microenvironment
肿瘤微环境中细胞群落的高分辨率分析
基本信息
- 批准号:10572355
- 负责人:
- 金额:$ 16.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2023-12-28
- 项目状态:已结题
- 来源:
- 关键词:AtlasesBiological AssayBiological MarkersBlood specimenBrainCancer BiologyCancer EtiologyCarcinomaCellsCessation of lifeClinicalCollectionCommunitiesComplexDNA MethylationDataData ScienceData SetDedicationsDependenceDepositionDetectionDevelopmentDiseaseDisease ManagementEcosystemElementsEvolutionGenetic TranscriptionGoalsImmuneImmunofluorescence ImmunologicIndividualJointsLigandsLiverMalignant NeoplasmsMapsMetastatic CarcinomaMethodsMethylationModelingMolecular ProfilingMonitorNeoplasm MetastasisNon-Invasive Cancer DetectionNucleic AcidsPatientsPatternPhasePhenotypePlasmaPopulationPredictive ValuePrimary NeoplasmProcessPublishingRecoveryResearchResolutionRoleSamplingShapesSignal PathwaySiteSolid NeoplasmTechniquesTestingTherapeuticTumor Biologybioinformatics toolcancer cellcancer therapycell communitycell free DNAclinically relevantcomputing resourcesepigenomicsimprovedindexinglarge cell Diffuse non-Hodgkin&aposs lymphomaliquid biopsylymph nodesmachine learning frameworknon-invasive monitornovelnovel therapeuticsperipheral bloodprognosticprognostic valuereceptorsingle-cell RNA sequencingtranscriptomicstreatment responsetumortumor DNAtumor heterogeneitytumor microenvironmenttumor progression
项目摘要
PROJECT SUMMARY/ABSTRACT
The tumor microenvironment (TME) is comprised of diverse immune and stromal elements – each with
context-dependent phenotypic states and distinct functions – that interact with cancer cells to form unique cellular
communities. In recent years, major advances have been made in understanding the cross-talk between tumor
and TME cell populations in shaping metastasis, and in leveraging it for therapies. However, a pan-cancer
characterization of single-cell communities within the TME, both in primary and metastatic tumor deposits, is
currently lacking. Moreover, circulating cell-free nucleic acids in peripheral blood plasma have emerged as
promising biomarkers for noninvasive detection of cancer, and for issue-of-origin mapping. However, no liquid
biopsy assays have been developed to monitor the cell states and cellular communities of the TME.
I hypothesize that large-scale profiling of TME communities could present new therapeutic
opportunities to transform cancer treatment. To study TME communities at scale, I recently developed
EcoTyper, a new machine learning framework for delineating cell states and multicellular communities, termed
ecotypes, from bulk tumor expression data. Using EcoTyper, I constructed the first global atlas of
transcriptionally-defined cell states and ecotypes in >6,000 primary bulk tumor samples from 16 types of
carcinoma and >1,000 diffuse large B cell lymphomas. Although these atlases are major milestones toward
understanding the TME, they do not achieve single-cell resolution. While efforts to construct pan-cancer single-
cell atlases have been described, they do not identify multicellular communities, nor do they provide automated
methods to discover new cell states or interrogate them in new data.
I propose that large-scale ecotype profiling (1) can be performed at single-cell resolution via
dedicated improvements to the EcoTyper platform, (2) can delineate the determinants of progression
to metastatic disease, (3) and can be used to noninvasively monitor clinically relevant heterogeneity in
the TME from liquid biopsies. In the K99 phase, I will significantly improve upon EcoTyper by extending it to
identify cell states and ecotypes from the joint analysis of large collections of single-cell RNA sequencing
(scRNA-seq) data. I will also define a global single-cell atlas of cell states that extends our previously published
pan-carcinoma atlas; and will derive a global atlas of ecotypes across multiple metastatic sites, including liver,
brain and lymph nodes, by analyzing thousands of metastatic carcinomas. In the R00 phase, my group will
develop bioinformatics tools for resolving epigenomic signatures of ecotypes, including methods that leverage
single-cell and bulk methylation data to define methylation signatures of TME ecotypes, and will leverage them
to test whether tumor ecotypes can be reliably detected from circulating nucleic acid molecules.
项目概要/摘要
肿瘤微环境 (TME) 由不同的免疫和基质元素组成 - 每个元素都具有
上下文相关的表型状态和独特的功能——与癌细胞相互作用形成独特的细胞
近年来,在理解肿瘤之间的相互作用方面取得了重大进展。
然而,TME 细胞群在塑造转移以及利用其进行治疗方面具有重要作用。
原发性和转移性肿瘤沉积物中 TME 内单细胞群落的特征是
此外,目前还缺乏外周血浆中的循环游离核酸。
用于癌症无创检测和起源问题定位的有前途的生物标志物但是,没有液体。
活检检测已被开发用于监测 TME 的细胞状态和细胞群落。
我认为对 TME 社区进行大规模分析可以提供新的治疗方法
为了大规模研究 TME 社区,我最近开发了改变癌症治疗的机会。
EcoTyper 是一种新的机器学习框架,用于描绘细胞状态和多细胞群落,称为
生态型,根据大量肿瘤表达数据,我使用 EcoTyper 构建了第一个全球图谱。
来自 16 种类型的超过 6,000 个原发性大块肿瘤样本中转录定义的细胞状态和生态型
癌和超过 1,000 个弥漫性大 B 细胞淋巴瘤。
尽管他们努力构建泛癌单细胞,但了解 TME 并没有实现单细胞分辨率。
细胞图谱已被描述,它们不识别多细胞群落,也不提供自动化
发现新细胞状态或在新数据中询问它们的方法。
我建议大规模生态型分析 (1) 可以通过以下方式以单细胞分辨率进行
对 EcoTyper 平台的专门改进,(2) 可以描绘进展的决定因素
转移性疾病,(3)并且可用于无创监测临床相关的异质性
在 K99 阶段,我将通过将其扩展到 EcoTyper 来显着改进。
通过对大量单细胞 RNA 测序的联合分析来识别细胞状态和生态型
(scRNA-seq) 数据,我还将定义一个细胞状态的全球单细胞图谱,该图谱扩展了我们之前发布的数据。
泛癌图谱;并将得出跨多个转移部位(包括肝脏)的全球生态型图谱;
通过分析数以千计的 R00 期转移癌,我的团队将研究大脑和淋巴结。
开发生物信息学工具来解析生态型的表观基因组特征,包括利用的方法
单细胞和批量甲基化数据来定义 TME 生态型的甲基化特征,并将利用它们
测试是否可以从循环核酸分子中可靠地检测肿瘤生态型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bogdan Alexandru Luca其他文献
Bogdan Alexandru Luca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
一种用于生物呼吸标记物检测的中红外全固态超短脉冲激光器的研究
- 批准号:62305188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米孔光电检测泪液双重生物标记物及其在糖尿病视网膜病变无创诊断中的应用研究
- 批准号:22304134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
吸湿性纳米纤维诱导呼出气生物标记物原位自富集机理及高灵敏检测研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于海马体子区域表面形态分析的早期阿尔茨海默症检测及图像生物标记物挖掘
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向胰腺癌早期标记物(间皮素)检测的SPR生物光纤传感技术
- 批准号:61905164
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Omic and Multidimensional Spatial Atlas of Metastatic Breast Cancer
转移性乳腺癌的组学和多维空间图谱
- 批准号:
10818062 - 财政年份:2023
- 资助金额:
$ 16.97万 - 项目类别:
DNA methylation in the development of multiple sclerosis
DNA甲基化在多发性硬化症发展中的作用
- 批准号:
10660209 - 财政年份:2023
- 资助金额:
$ 16.97万 - 项目类别:
Integration of advanced imaging and multiOMICs to elucidate pro-atherogenic effects of endothelial-to-Immune cell-like transition (EndICLT)
整合先进成像和多组学技术来阐明内皮细胞向免疫细胞样转变的促动脉粥样硬化效应 (EndICLT)
- 批准号:
10606258 - 财政年份:2023
- 资助金额:
$ 16.97万 - 项目类别:
Mapping Neural Circuit Activity Mediating MDMA's Prosocial Effect
绘制调节 MDMA 亲社会效应的神经回路活动
- 批准号:
10659760 - 财政年份:2023
- 资助金额:
$ 16.97万 - 项目类别:
Project #2 Integrated single-nucleus multi-omics (ATAC-seq+RNA-seq or chromatin accessibility + RNA-seq) of human TGs
项目
- 批准号:
10806548 - 财政年份:2023
- 资助金额:
$ 16.97万 - 项目类别: