Improving phage-based medicine with immunoengineering

通过免疫工程改进基于噬菌体的医学

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT A resurgence of research interest in bacteriophages, viruses that infect bacteria, is driving the development of engineered phages for biomedical applications, including antimicrobial therapy and phage-based vaccination. As antimicrobial agents, phages have significant advantages over conventional antibiotics: they are well- tolerated, pathogen-specific, and replicate at the site of infection. Phages are also promising as vaccine platforms because they can be precisely engineered to deliver multiple foreign antigens. However, phages are immunogenic and both applications are susceptible to interfering immune responses. Antimicrobial phages, for example, can elicit neutralizing antibodies that prevent infection of the bacterial target. This immunogenic nature is advantageous for vaccine development, since the phage acts as its own adjuvant, but it comes at a price: off-target responses to immunodominant phage antigens can distract from intended protective responses to foreign antigens. Unfortunately, data on phage immunology are limited, confounding routine biomedical applications of phage. This proposal outlines basic experiments to elucidate the basis of phage immunogenicity and evaluate methods of modulating it. Aim 1 will develop a structural map of antibody binding to three therapeutic mycobacteriophages. Structure- guided engineering and directed evolution will be used to generate mutant phages that escape antibody binding. The ability of these mutants to evade established immune responses to their wild-type counterparts in vivo will be evaluated in a mouse model. In Aim 2 the same phages will be used as platforms for a therapeutic bacterial vaccine. Leveraging both phage display and phage DNA vector technologies, the vaccine candidates will defend and protect against bacteria with three mechanisms: 1) phage infection and killing, 2) generation of bacterium-binding antibodies, and 3) activation of helper and cytotoxic T cells. Aim 3 will evaluate a method to suppress interfering immune responses: co-administration of phage with rapamycin-loaded nanoparticles. This will down-regulate phage-specific helper T cells and upregulate regulatory T cells, training the immune system to recognize phage as ‘self’. These Aims will expand our understanding of phage immunogenicity and assess the potential to improve phage-based medicine with principles from immunoengineering. Furthermore, Aim 1 is a training vehicle for the candidate, who has developed immunology experience in the lab but requires mentored training and formal education to establish independence in this field. Aim 1 also provides additional mentored training in structural biology, specifically asymmetric reconstructions of phage-antibody complexes. With the planned scientific training, practice in publishing and grant writing, and the support of her mentors throughout an academic job search, the candidate is expected to establish and sustain an independent research career focused on immunoengineering phage to improve their biomedical applications.
项目概要/摘要 人们对噬菌体(感染细菌的病毒)的研究兴趣重新兴起,正在推动以下领域的发展: 用于生物医学应用的工程噬菌体,包括抗菌治疗和基于噬菌体的疫苗接种。 作为抗菌剂,噬菌体比传统抗生素具有显着优势:它们具有良好的 噬菌体具有耐受性、病原体特异性并且可以在感染部位复制,因此也有望作为疫苗。 平台,因为它们可以被精确设计来传递多种外源抗原。 具有免疫原性,并且这两种应用都容易受到抗菌噬菌体的干扰。 例如,可以引发中和抗体,防止细菌靶标的感染。 自然有利于疫苗的开发,因为噬菌体充当其自身的佐剂,但它的出现 价格:对免疫显性噬菌体抗原的脱靶反应可能会分散预期的保护性反应 不幸的是,噬菌体免疫学的数据有限,混淆了常规生物医学。 该提案概述了阐明噬菌体基础的基本实验。 免疫原性并评估其调节方法。 目标 1 将开发与三种治疗性分枝杆菌噬菌体结合的抗体结构图。 引导工程和定向进化将用于产生逃避抗体的突变噬菌体 这些突变体逃避对其野生型分子的免疫反应的能力。 体内将在小鼠模型中进行评估,相同的噬菌体将用作治疗平台。 利用噬菌体展示和噬菌体 DNA 载体技术,候选疫苗。 将通过三种机制防御和保护细菌:1)噬菌体感染和杀死,2)产生 细菌结合抗体,3) 辅助细胞和细胞毒性 T 细胞的激活,目标 3 将评估一种方法。 抑制干扰免疫反应:噬菌体与负载雷帕霉素的纳米颗粒共同给药。 将下调噬菌体特异性辅助 T 细胞并上调调节性 T 细胞,从而训练免疫系统 将噬菌体识别为“自我”,这些目标将扩大我们对噬菌体免疫原性的理解并进行评估。 此外,目标 1 是利用免疫工程原理改进噬菌体医学的潜力。 为候选人提供的培训工具,该候选人已在实验室积累了免疫学经验,但需要 目标 1 还提供了额外的指导培训和正规教育,以建立该领域的独立性。 指导结构生物学培训,特别是噬菌体抗体复合物的不对称重建。 通过计划的科学培训、出版和资助写作实践以及导师的支持 在整个学术求职过程中,候选人应建立并维持独立性 研究生涯专注于免疫工程噬菌体以改善其生物医学应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Krista Gabrielle Freeman其他文献

Krista Gabrielle Freeman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Administrative Core
行政核心
  • 批准号:
    10402964
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
Center of Research Translation on the Osteoimmunology of Bone Infection (CoRTOBI)
骨感染骨免疫学研究翻译中心 (CoRTOBI)
  • 批准号:
    10402963
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
Effects of Host Metabolic Variation on Antibiotic Susceptibility
宿主代谢变化对抗生素敏感性的影响
  • 批准号:
    10375521
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
Effects of Host Metabolic Variation on Antibiotic Susceptibility
宿主代谢变化对抗生素敏感性的影响
  • 批准号:
    10088499
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
AIDS Malignancy Clinical Trials Consortium
艾滋病恶性肿瘤临床试验联盟
  • 批准号:
    7689546
  • 财政年份:
    2006
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了