Improving phage-based medicine with immunoengineering
通过免疫工程改进基于噬菌体的医学
基本信息
- 批准号:10572011
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdjuvantAdvisory CommitteesAntibioticsAntibodiesAntibody FormationAntibody ResponseAntigen-Presenting CellsAntigensAutomobile DrivingB-LymphocytesBacteriaBacterial AntigensBacterial InfectionsBacterial VaccinesBacteriophagesBindingCapsidClinicalClinical TrialsCommunicable DiseasesCommunitiesComplexCryoelectron MicroscopyCytotoxic T-LymphocytesDNADataData AnalysesData CollectionDefense MechanismsDevelopmentDirected Molecular EvolutionEducationEngineeringEpitope MappingEpitopesEscape MutantFoundationsGenerationsGrantHelper-Inducer T-LymphocyteHumanImmune EvasionImmune ToleranceImmune responseImmune systemImmunocompetentImmunocompromised HostImmunologicsImmunologyImmunosuppressive AgentsInfectionInfection preventionLaboratoriesLearningMapsMedicalMedicineMentorsMethodsModelingMusMutateMycobacteriophagesMycobacterium InfectionsMycobacterium abscessusNatureOccupationsOutcomePatientsPhage DisplayPharmaceutical PreparationsPhysicsPolymersPredispositionPreparationPricePublishingRecombinantsRegulatory T-LymphocyteResearchRespiratory DiseaseRouteSamplingSerologySerumSirolimusSiteStructureT cell responseT-Lymphocyte EpitopesTechniquesTechnologyTherapeuticTrainingVaccinationVaccinesVirusWritingadaptive immune responseantimicrobialantimicrobial drugcareercombatdosageemerging pathogenexperienceexperimental studyimmunoengineeringimmunogenicimmunogenicityimmunoreactionimmunoregulationimprovedin vivointerestmanufacturemicrobialmouse modelmutantnanoparticleneutralizing antibodynovelparticlepathogenpathogenic bacteriapathogenic virusprophylacticreconstructionresponsestructural biologytext searchingthermostabilityvaccine candidatevaccine developmentvaccine platformvector
项目摘要
PROJECT SUMMARY/ABSTRACT
A resurgence of research interest in bacteriophages, viruses that infect bacteria, is driving the development of
engineered phages for biomedical applications, including antimicrobial therapy and phage-based vaccination.
As antimicrobial agents, phages have significant advantages over conventional antibiotics: they are well-
tolerated, pathogen-specific, and replicate at the site of infection. Phages are also promising as vaccine
platforms because they can be precisely engineered to deliver multiple foreign antigens. However, phages are
immunogenic and both applications are susceptible to interfering immune responses. Antimicrobial phages, for
example, can elicit neutralizing antibodies that prevent infection of the bacterial target. This immunogenic
nature is advantageous for vaccine development, since the phage acts as its own adjuvant, but it comes at a
price: off-target responses to immunodominant phage antigens can distract from intended protective responses
to foreign antigens. Unfortunately, data on phage immunology are limited, confounding routine biomedical
applications of phage. This proposal outlines basic experiments to elucidate the basis of phage
immunogenicity and evaluate methods of modulating it.
Aim 1 will develop a structural map of antibody binding to three therapeutic mycobacteriophages. Structure-
guided engineering and directed evolution will be used to generate mutant phages that escape antibody
binding. The ability of these mutants to evade established immune responses to their wild-type counterparts in
vivo will be evaluated in a mouse model. In Aim 2 the same phages will be used as platforms for a therapeutic
bacterial vaccine. Leveraging both phage display and phage DNA vector technologies, the vaccine candidates
will defend and protect against bacteria with three mechanisms: 1) phage infection and killing, 2) generation of
bacterium-binding antibodies, and 3) activation of helper and cytotoxic T cells. Aim 3 will evaluate a method to
suppress interfering immune responses: co-administration of phage with rapamycin-loaded nanoparticles. This
will down-regulate phage-specific helper T cells and upregulate regulatory T cells, training the immune system
to recognize phage as ‘self’. These Aims will expand our understanding of phage immunogenicity and assess
the potential to improve phage-based medicine with principles from immunoengineering. Furthermore, Aim 1 is
a training vehicle for the candidate, who has developed immunology experience in the lab but requires
mentored training and formal education to establish independence in this field. Aim 1 also provides additional
mentored training in structural biology, specifically asymmetric reconstructions of phage-antibody complexes.
With the planned scientific training, practice in publishing and grant writing, and the support of her mentors
throughout an academic job search, the candidate is expected to establish and sustain an independent
research career focused on immunoengineering phage to improve their biomedical applications.
项目摘要/摘要
对细菌的研究兴趣的复兴,感染细菌的病毒正在推动
用于生物医学应用的工程噬菌体,包括抗菌治疗和基于噬菌体的疫苗接种。
作为抗菌剂,噬菌体比常规抗生素具有显着优势:它们是很好的
在感染部位耐受性,病原体特异性和复制。噬菌体也有望作为疫苗
平台是因为它们可以精确地设计用于提供多种外国抗原。但是,噬菌体是
免疫原性和两种应用都容易干扰免疫反应。抗菌噬菌体,用于
例如,可以引起中和抗体,以防止细菌靶标感染。这种免疫原性
大自然对于疫苗开发是有利的,因为噬菌体是自身的调整,但它是
价格:对免疫主导噬菌体抗原的靶向反应可能会分散预期的受保护反应
到外国抗原。不幸的是,有关噬菌体免疫学的数据有限,使常规生物医学混淆
噬菌体的应用。该建议概述了基本实验以阐明噬菌体的基础
免疫原性和评估调节它的方法。
AIM 1将开发与三种治疗性分枝杆菌结合的抗体结构图。结构-
指导工程和定向进化将用于产生逃脱抗体的突变噬菌体
结合。这些突变体逃避的能力对其野生型对应物建立了免疫反应
体内将在鼠标模型中评估。在AIM 2中,相同的噬菌体将用作治疗的平台
细菌疫苗。利用噬菌体显示和噬菌体DNA矢量技术,候选疫苗
将通过三种机制进行防御并预防细菌:1)噬菌体感染和杀戮,2)产生
细菌结合抗体,3)辅助和细胞毒性T细胞的激活。 AIM 3将评估一种方法
抑制干扰免疫反应:与雷帕霉素的纳米颗粒共同给药。这
将下调噬菌体特异性辅助T细胞并上调调节性T细胞,训练免疫系统
认识到噬菌体为“自我”。这些目标将扩大我们对噬菌体免疫原性和评估的理解
通过免疫工程原理改善基于噬菌体药物的潜力。此外,目标1是
候选人的训练工具,他在实验室中发展了免疫学经验,但需要
迈向培训和正规教育,以在这一领域建立独立性。 AIM 1还提供了其他
在结构生物学方面进行了鉴定的培训,特别是噬菌体抗体复合物的不对称重建。
通过计划的科学培训,出版和赠款写作的实践以及她的导师的支持
通过学术求职,预计候选人将建立并维持独立
研究职业专注于免疫工程噬菌体,以改善其生物医学应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krista Gabrielle Freeman其他文献
Krista Gabrielle Freeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Center of Research Translation on the Osteoimmunology of Bone Infection (CoRTOBI)
骨感染骨免疫学研究翻译中心 (CoRTOBI)
- 批准号:
10402963 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Effects of Host Metabolic Variation on Antibiotic Susceptibility
宿主代谢变化对抗生素敏感性的影响
- 批准号:
10375521 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Effects of Host Metabolic Variation on Antibiotic Susceptibility
宿主代谢变化对抗生素敏感性的影响
- 批准号:
10088499 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别: