Oxidative stress and RNA methylation
氧化应激和 RNA 甲基化
基本信息
- 批准号:10569629
- 负责人:
- 金额:$ 38.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-14 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Abnormal CellAddressAgreementAlcohol consumptionAntioxidantsAtmosphereAutoimmunityB-Cell LymphomasB-LymphocytesBenignBiological ProcessChemicalsClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplexConsumptionDNADataDiabetes MellitusDioxygenasesDiseaseEmbryonic DevelopmentEnvironmental ExposureEnvironmental Risk FactorEnzymesEthanolEventExcisionFree RadicalsGene ExpressionGene Expression ProfileGenetic ModelsGrowthHomeostasisHumanHypermethylationImpairmentIn VitroIsocitrate DehydrogenaseKnowledgeLinkMalignant - descriptorMalignant NeoplasmsMediatingMetabolismMethyltransferaseMitochondriaMixed Function OxygenasesModelingModificationNerve DegenerationNon-MalignantObesityOncogenicOxidation-ReductionOxidative StressOxidative Stress InductionOxidoreductasePathogenicityPhysiologicalPhysiological ProcessesPlayPoisonPropertyRNARNA methylationRadiationReactive Oxygen SpeciesRecurrenceReportingRoleSecondary toSignal PathwaySignal TransductionSupplementationSystemTestingTransducersUltraviolet RaysUntranslated RNAWorkalpha ketoglutaratecancer cellcigarette smokingcofactordemethylationepitranscriptomeexposed human populationhistone demethylasehuman diseasein vitro Modelin vivoinhibitormitochondrial metabolismmouse modelmutantnovelpollutantstem cell functiontranscriptome
项目摘要
N6-methyladenosine (m6A) is a prevalent chemical modification of RNA that influences gene expression and
cell signaling. The levels of m6A are dynamically regulated by a RNA methyltransferase complex and by the
alpha-ketoglutarate (αKG)-dependent RNA demethylases, FTO and ALKBH5. Misregulated RNA methylation,
and its attendant effects on the epitranscriptome, has been associated with a host of human diseases,
including obesity/diabetes, auto-immunity, neurodegeneration and cancer. Notably, these conditions can all
develop in association with environmental factors that influence oxidative stress, e.g., atmospheric pollutants,
cigarette smoking, ultraviolet rays, radiation, toxic chemicals, etc., but the putative influence of redox
homeostasis on RNA methylation is unknown. To start to address this knowledge gap, we first considered that
the activity of the m6A “erasers” FTO and ALKBH5 rely on intact intermediary metabolism, a point that we
illustrated with the discovery that accumulation of D-2-hydroxyglurate (D-2-HG) in IDH1/2 mutant cancers
inhibits FTO/ALKBH5 and elevates m6A levels. We expanded on these data by showing that loss of D2- or L2-
hydroxyglutarate dehydrogenase (D2HGDH, L2HGDH), which convert D- or L-2-HG into αKG, also suppress
FTO/ALKBH5 activity and promotes RNA hypermethylation. Importantly, work from our group and others have
uncovered a marked interplay between cellular accumulation of 2-HG, intermediary metabolism and redox
homeostasis. These observations led us to speculate that high levels of reactive oxygen species (ROS) may
broadly regulate the epitranscriptome. To start to test this concept, we exposed human B cells (normal and
malignant) to physiologically relevant levels of H202 and ethanol and detected a marked increase in m6A
levels. Using CRISPR KO models of FTO and ALKBH5, we preliminarily confirmed our hypothesis that ROS
modify RNA methylation by inhibiting the activity of RNA demethylases. Notably, D2HGDH and L2HGDH are
NAD+-dependent enzymes, and since ROS elevation consumes NAD+, it is possible that suppression of
D2HGDH/L2HGDH play a part in the cross-talk between redox homeostasis and RNA methylation. Here, we
will use genetic models in vitro an in vivo to test the overall hypothesis that oxidative stress-mediated
disruption of intermediary metabolism modifies the epitranscriptome. More specifically, we postulate that NAD+
consumption secondary to oxidative stress impairs the activity of D2HGDH and L2HGDH, disrupts 2-HG/αKG
homeostasis, thus inhibiting FTO/ALKBH5 activity and promoting RNA hypermethylation. In aim 1, we will
mechanistically explain how ROS inhibits FTO/ALKBH5 activity and test if NAD+-modulating agents can correct
the RNA hypermethylation associated with oxidative stress. In aim 2, using a novel compound mouse model of
B-cell lymphoma, we will test the concept that suppression of RNA demethylases is integral to the oncogenic
role of ROS. In aim 3, we will define the ROS-driven methylRNA/gene expression signatures and identify the
signaling pathways that are deregulated at the intersection of redox imbalance and the epitranscriptome.
N6-甲基腺苷(M6A)是RNA的普遍化学修饰,影响基因表达和
细胞信号传导。 M6a的水平由RNA甲基转移酶复合酶的动态调节,并由
α-酮戊二酸(αkg)依赖性RNA脱甲基酶FTO和ALKBH5。 RNA甲基化不正常,
它的随之而来的对同意组的影响与许多人类疾病有关,
包括肥胖/糖尿病,自身免疫性,神经变性和癌症。值得注意的是,这些条件都可以
与影响氧化应激的环境因素相关的发展,例如大气污染物,
吸烟,紫外线,辐射,有毒化学物质等,但氧化还原的推定影响
RNA甲基化上的稳态尚不清楚。为了开始解决这个知识差距,我们首先考虑
M6A“橡皮” FTO和ALKBH5的活性依赖于完整的中介代谢,这一点是我们
用IDH1/2突变体癌症中D-2-羟基氟化物(D-2-HG)的积累进行了说明
抑制FTO/ALKBH5并提高M6A水平。我们通过显示D2-或L2-的损失来扩展这些数据
将D-或L-2-HG转换为αkg的羟基谷酸脱氢酶(D2HGDH,L2HGDH),也抑制
FTO/ALKBH5活性并促进RNA高甲基化。重要的是,我们小组和其他人的工作有
发现了2-Hg,中间代谢和氧化还原的细胞积累之间的明显相互作用
稳态。这些观察结果使我们推测高水平的活性氧(ROS)可能
广泛调节同源体。为了开始测试这个概念,我们暴露了人类B细胞(正常和
恶性)与H202和乙醇的物理相关水平,并检测到M6A的显着增加
水平。使用FTO和ALKBH5的CRISPR KO模型,我们先确认了ROS的假设
通过抑制RNA脱甲基酶的活性来修饰RNA甲基化。值得注意的是,D2HGDH和L2HGDH是
NAD+依赖性酶,并且由于ROS升高会消耗NAD+,因此有可能抑制
D2HGDH/L2HGDH在氧化还原稳态和RNA甲基化之间的串扰中发挥了作用。在这里,我们
将在体内使用遗传模型来检验氧化应激介导的总体假设
中间新陈代谢的破坏修饰了上映组。更具体地说,我们假设NAD+
氧化应激继发的消费会损害D2HGDH和L2HGDH的活性,破坏2-Hg/αkg
稳态,从而抑制FTO/ALKBH5活性并促进RNA高甲基化。在AIM 1中,我们将
机械解释ROS如何抑制FTO/ALKBH5活性并测试NAD+调节剂是否可以纠正
与氧化应激相关的RNA高甲基化。在AIM 2中,使用新型的复合鼠标模型
B细胞淋巴瘤,我们将测试以下概念,即RNA脱甲基酶的抑制是致癌性不可或缺的
ROS的角色。在AIM 3中,我们将定义由ROS驱动的甲基NRA/基因表达特征,并确定
在氧化还原不平衡和表面转录组的交点上进行管制的信号通路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo C Aguiar其他文献
Ricardo C Aguiar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo C Aguiar', 18)}}的其他基金
Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
- 批准号:
10322194 - 财政年份:2021
- 资助金额:
$ 38.75万 - 项目类别:
Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
- 批准号:
10117575 - 财政年份:2021
- 资助金额:
$ 38.75万 - 项目类别:
Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
- 批准号:
10541234 - 财政年份:2021
- 资助金额:
$ 38.75万 - 项目类别:
Post-Translational Control of TET Function in Lymphoma
淋巴瘤 TET 功能的翻译后控制
- 批准号:
10251482 - 财政年份:2013
- 资助金额:
$ 38.75万 - 项目类别:
Post-Translational Control of TET Function in Lymphoma
淋巴瘤 TET 功能的翻译后控制
- 批准号:
10512054 - 财政年份:2013
- 资助金额:
$ 38.75万 - 项目类别:
Non-coding RNAs at the interface of aberrant NF-kB signals and lymphomagenesis
异常 NF-kB 信号与淋巴瘤发生界面的非编码 RNA
- 批准号:
8974297 - 财政年份:2013
- 资助金额:
$ 38.75万 - 项目类别:
Non-coding RNAs at the interface of aberrant NF-kB signals and lymphomagenesis
异常 NF-kB 信号与淋巴瘤发生界面的非编码 RNA
- 批准号:
8436704 - 财政年份:2013
- 资助金额:
$ 38.75万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ghana-SPARCO: Ghana Sickle Pan-African Research Consortium
加纳-SPARCO:加纳镰刀泛非研究联盟
- 批准号:
10625460 - 财政年份:2021
- 资助金额:
$ 38.75万 - 项目类别:
Single Step Strategy for the Therapeutic Reprogramming in Epidermolysis Bullosa Patients
大疱性表皮松解症患者治疗性重编程的一步策略
- 批准号:
9475196 - 财政年份:2017
- 资助金额:
$ 38.75万 - 项目类别:
Single Step Strategy for the Therapeutic Reprogramming in Epidermolysis Bullosa Patients
大疱性表皮松解症患者治疗重编程的一步策略
- 批准号:
9317254 - 财政年份:2017
- 资助金额:
$ 38.75万 - 项目类别: