A Novel Glycosaminoglycan Mimetic Scaffold for Cartilage Repair
用于软骨修复的新型糖胺聚糖模拟支架
基本信息
- 批准号:10558632
- 负责人:
- 金额:$ 34.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-16 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdultAffectAmericanBindingBiochemicalBiocompatible MaterialsBiologicalBone MarrowCSPG6 geneCartilageCartilage MatrixCell AggregationCell CommunicationCell-Matrix JunctionCellsCelluloseChondrocytesChondrogenesisClinicalCollagenDataDefectDegenerative polyarthritisDevelopmentEncapsulatedEventExtracellular MatrixFibrocartilagesGelatinGlycosaminoglycansGoalsGrowthGrowth Factor InteractionHeparinHistologicHumanHyaline CartilageImaging TechniquesIn VitroInterventionJointsKneeLesionMechanicsMediatingMesenchymalMesenchymal DifferentiationMesenchymal Stem CellsMethodsMiniature SwineModelingMolecular Biology TechniquesMorphologyOperative Surgical ProceduresOryctolagus cuniculusPatternPhenotypePhysical condensationPlayPolysaccharidesProteoglycanPublishingRoleSiteSodiumStructureSulfateSurfaceTechniquesTestingThickTissuesWaterage effectarticular cartilagebone cellbone marrow mesenchymal stem cellcartilage developmentcartilage repaircellulose sulfateclinically relevantearly onsethealingimprovedin vivomicrobicidemigrationmimeticsnovelnovel strategiesosteochondral repairosteochondral tissuepreventrepairedscaffoldstem cellssubchondral bonetranslatable strategy
项目摘要
Project Summary
With the limited healing capability of articular cartilage, clinical intervention is necessary to prevent
further articular cartilage damage and early onset of degenerative osteoarthritis. Current surgical
procedures result in inadequate repair suffering from poor integration with surrounding hyaline cartilage
and the formation of fibrocartilage instead of normal hyaline cartilage. The most frequently used reparative
treatment for small symptomatic lesions of articular cartilage of the knee is microfracturing, where multiple
holes are made in the subchondral bone allowing stem cells from the bone marrow to migrate to the joint
surface and facilitate repair. However, in the long-term, this method does not result in the replacement of
normal hyaline cartilage. The approach described here is to combine the surgical treatment of
microfracturing, which will provide endogenous cells capable of chondrogenesis to the defect site, with a
novel scaffold that mimics the cartilage extracellular matrix during development to promote
chondrogenesis and cartilage tissue formation. During cartilage development, the major matrix
components are collagens and proteoglycans, wherein the predominant glycosaminoglycans (GAGs) in
the proteoglycans are chondroitin-6-sulfate and heparin sulfate. The pattern and degree of sulfation in
these and other GAGs play an integral role in providing the necessary functionality/bioactivity for growth
factor interactions in cartilage development. Typical synthetic biomaterials lack functional sites that would
enable this interaction. This study will investigate a semi-synthetic derivative of cellulose, which is one
of the most abundant natural materials, for cartilage repair. Sodium cellulose sulfate (NaCS), which is
water soluble and mimics the structure of GAG, will be fabricated into a scaffold and combined with
microfracturing as a novel strategy for cartilage repair. NaCS is a linear polysaccharide that can be
synthesized with varying degrees of sulfation for improved bioactivity over native GAGs. In our studies to
date, fully sulfated NaCS has shown promise in promoting chondrogenesis and accelerating the repair
of osteochondral defects. We hypothesize that NaCS will impart functional qualities that are similar to
GAGs, direct chondrogenesis and cartilage tissue formation. Aim 1 will fabricate and characterize NaCS
constructs and investigate bone marrow derived mesenchymal stem cell (MSC) chondrogenesis in vitro.
Aim 2 will evaluate cartilage tissue formation and integration in vivo. The goal of this aim is to
evaluate cartilage tissue formation and integration with surrounding host cartilage in a rabbit defect
model. Aim 3 will investigate NaCS constructs in a clinically relevant, critically-sized cartilage defect
model. This study proposes a novel GAG-mimetic strategy where NaCS containing scaffolds can be
combined with microfracturing as an effective and translatable strategy for treating cartilage lesions.
项目摘要
由于关节软骨的愈合能力有限,因此需要进行临床干预以防止
进一步的关节软骨损伤和退化性骨关节炎的早期发作。当前手术
程序导致维修不足,由于整合不良的透明软骨
并形成纤维网状,而不是正常的透明软骨。最常用的修复
膝盖关节软骨的小症状病变的治疗是微裂缝的,其中有多个
在软骨下骨中制成孔,使从骨髓中的干细胞迁移到关节
表面并促进修复。但是,从长远来看,此方法并不能替代
正常的透明软骨。这里描述的方法是结合手术治疗
微裂缝将提供能够为缺陷部位提供软骨发生的内源细胞,
在开发过程中模仿软骨细胞外基质的新型脚手架以促进
软骨发生和软骨组织形成。在软骨开发过程中,主要矩阵
成分是胶原蛋白和蛋白聚糖,其中主要的糖胺聚糖(gags)
蛋白聚糖是软骨素-6-硫酸盐和硫酸肝素。硫酸的模式和程度
这些和其他插科打在提供增长的必要功能/生物活性方面起着不可或缺的作用
软骨发育中的因子相互作用。典型的合成生物材料缺乏功能位点
启用这种互动。这项研究将研究纤维素的半合成衍生物,这是一个
最丰富的天然材料,用于软骨维修。纤维素硫酸钠(NACS),
水溶性和模仿插科打结构的结构将被制成脚手架,并与
微裂缝是软骨修复的新型策略。 NACS是一种线性多糖,可以是
与不同程度的硫酸化合成,以改善天然插科打no的生物活性。在我们的研究中
日期,完全硫化的NACS在促进软骨发生和加速修复方面表现出了希望
骨软骨缺陷。我们假设NACS会赋予与
插科打,直接软骨发生和软骨组织形成。 AIM 1将捏造并表征NACS
构建并研究骨髓在体外衍生的间充质干细胞(MSC)软骨发生。
AIM 2将评估软骨组织形成和体内整合。这个目标的目的是
评估软骨组织的形成,并与周围宿主软骨的整合在兔缺陷中
模型。 AIM 3将在临床相关的,批判性的软骨缺陷中研究NACS构建体
模型。这项研究提出了一种新型的插科打模仿策略,其中含有NAC的脚手架可以是
结合微裂纹作为治疗软骨病变的有效且可翻译的策略。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Treena Lynne Arinzeh其他文献
Treena Lynne Arinzeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Treena Lynne Arinzeh', 18)}}的其他基金
A Metabolic Strategy Utilizing a Zein Scaffold for Bone Repair
利用玉米蛋白支架进行骨修复的代谢策略
- 批准号:
10735717 - 财政年份:2022
- 资助金额:
$ 34.09万 - 项目类别:
A Novel Glycosaminoglycan Mimetic Scaffold for Cartilage Repair - diversity supplement
用于软骨修复的新型糖胺聚糖模拟支架 - 多样性补充
- 批准号:
10406732 - 财政年份:2021
- 资助金额:
$ 34.09万 - 项目类别:
A Novel Glycosaminoglycan Mimetic Scaffold for Cartilage Repair
用于软骨修复的新型糖胺聚糖模拟支架
- 批准号:
10752984 - 财政年份:2021
- 资助金额:
$ 34.09万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 34.09万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别:
Translational Research and Implementation Science for Nurses (TRAIN) Program 2.0
护士转化研究和实施科学 (TRAIN) 计划 2.0
- 批准号:
10680769 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别:
Reducing Opioid and Other Drug Use in Justice-Involved Emerging Adults using Paraprofessional Coaches (with and without Lived Experience) to Deliver Effective Services in a Non-Treatment Setting
使用辅助专业教练(有或没有生活经验)减少涉及司法的新兴成年人的阿片类药物和其他药物使用,以在非治疗环境中提供有效的服务
- 批准号:
10846139 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别: