Contribution of Macrophages and Fractalkine Towards Degeneration and Repair of Cochlear Synapses
巨噬细胞和分形蛋白对耳蜗突触退化和修复的贡献
基本信息
- 批准号:10090991
- 负责人:
- 金额:$ 25.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-05 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:Acoustic NerveAnimalsAttenuatedAuditoryAxonBindingBrainCX3CR1 geneCellsCessation of lifeCochleaCochlear ImplantsDataDevelopmentDiagnosisEnvironmentFDA approvedFractalkineFunctional disorderFutureGeneticGlutamatesGoalsHair CellsHearingHearing TestsHearing problemImmuneImmunotherapyImpairmentIndividualInjuryInnate Immune SystemInner Hair CellsInterventionLeadMeasuresMembraneMicrogliaMolecularMusNatural regenerationNerve DegenerationNerve FibersNeuritesNeuronsNeuropathyNoiseNoise-Induced Hearing LossOutcomePathologyPeptidesPerformancePeripheralPharmaceutical PreparationsPreventionProtein IsoformsResearch DesignRoleSensory HairSignal TransductionSynapsesTestingTherapeuticTraumaafferent nerveaxonal degenerationbasecochlear synaptopathycytokinedensitydrug preservationefficacy testingexcitotoxicityexperiencehair cell regenerationhearing impairmenthearing preservationhearing restorationhidden hearing lossimprovedin vivoinsightinterestmacrophageneuron lossneurotrophic factornoise traumanoveloverexpressionpreservationpreventreceptorrecruitregenerative therapyrelating to nervous systemrepairedribbon synapsespeech recognitionspiral ganglion
项目摘要
PROJECT SUMMARY/ABSTRACT
Noise trauma can primarily damage the synaptic connections between the inner hair cells and the peripheral
axons of the spiral ganglion neurons. Noise-induced synaptopathy is attributed to glutamate excitotoxicity and
leads to gradual axonal degeneration and ultimately death of the spiral ganglion neurons. The consequences
of loss of synapses and neurons include auditory perceptual dysfunctions leading to difficulty in speech
recognition and listening in noisy environments. This type of auditory dysfunction is known as “hidden hearing
loss” because it is not readily diagnosed through standard hearing tests. Moreover, absence of spiral
ganglion neurons limits the performance of primary therapies for hearing loss such as cochlear implants and
future hair cell regeneration strategies. Currently, there are no approved drugs that promote neuron survival
or elicit regeneration of lost auditory nerves and replenish their synaptic connections with surviving hair cells.
Therefore, it is of great interest to understand the mechanisms for synaptic and neuron degeneration and
regeneration for the development of better ototherapeutics. We recently demonstrated that synaptopathic noise
trauma is sufficient to recruit macrophages (innate-immune cells) towards the damaged inner hair cell-synaptic
region. While the damaged synapses can undergo spontaneous repair however, disruption of fractalkine
signaling (by genetic deletion of fractalkine (FKN) receptor CX3CR1 on macrophages) impairs such
spontaneous synaptic repair and increases spiral ganglion neuron loss after trauma. These data imply that
intact fractalkine signaling is necessary for synaptic repair and neuron survival in the damaged cochlea. Here,
we propose to investigate the effect of activation of fractalkine signaling on prevention and repair of loss
of synapses and neuron survival following cochlear trauma. Aim 1 will determine whether FKN treatment
repairs damaged synapses after noise trauma or excitotoxic insult in mammalian mouse cochlea.
Specifically, FKN peptide will be injected either (transtympanically) after synaptopathic noise trauma in vivo
or after glutamate- induced excitotoxicity in cochlear explants. The precise contribution of FKN membrane or
soluble isoforms towards synaptic repair will be examined. Aim 2 will determine whether FKN treatment
reduces degeneration of synapses following noise trauma or glutamate excitotoxicity. We will treat with FKN
membrane or soluble isoforms prior to glutamate treatment in ex vivo cochlear explants or prior to noise trauma
in vivo (transtympanically). In Aim 3, we will eliminate cochlear macrophages and examine the influence of
this intervention on the degree of synaptic degeneration and repair after synaptopathic noise trauma. For
each aim, auditory function along with morphometric analyses of hair cell, macrophage, synapse and spiral
ganglion neuron counts will be performed. Together, the study design will aid in investigating the effect of
macrophages and fractalkine treatment on cochlear synapse degeneration and repair and hearing restoration
and may lead to identification of novel fractalkine-based therapeutics for “hidden-hearing loss”.
项目摘要/摘要
噪声创伤主要可能损害损害损害损害损害损害损害损害损害伤害伤害伤害伤害伤害伤害伤害伤害
螺旋神经神经元的轴突。
导致轴突变性,最终导致螺旋神经元的死亡
突触丧失和神经元inurons包括听觉感知功能障碍对语音的差异
在嘈杂的环境中识别和聆听。
损失”,因为它尚未准备好通过标准听力测试诊断的诊断。此外,缺乏螺旋
神经节神经元限制了用于听力损失的主要疗法的性能,例如耳蜗植入物和植入物IND
未来的毛细胞再生策略目前没有促进神经元生存的批准药物
或引起失去的听觉神经的再生,并将其突触连接补充与存活的毛细胞。
因此,了解突触和神经元变性的机制以及
再生以发展更好的其他无形噪声
创伤足以将巨噬细胞(先天性免疫细胞)募集到受损的内毛细胞突触
区域。
信号传导(通过遗传缺失(FKN)受体CX3CR1在巨噬细胞上的遗传缺失)会损害这种情况
创伤后,自发的突触修复并增加了螺旋神经神经元的损失。
完整的分裂信号传导对于受损的耳蜗中的突触修复和神经元存活是必需的。
我们建议研究分子信号传导激活对预防和修复损失的影响
耳蜗创伤后的突触和神经元存活。
修复噪声创伤或哺乳动物小鼠耳蜗中的突触损坏。
具体而言,在体内突触噪声创伤之后,将(三翼型)注入FKN肽
或谷氨酸诱导的兴奋性人口毒剂的精确贡献。
可溶性同工型将检查突触修复。
减少噪声创伤或谷氨酸兴奋剂后突触的变性。
在离体耳蜗外植体中或噪声创伤之前进行谷氨酸治疗之前的膜或可溶同工型
体内(在AIM 3中)。
突触噪声创伤后的突触变性和修复装置的访谈
每个目标,听觉功能以及毛细胞,巨噬细胞,突触和螺旋的形态分析
神经节计数将共同执行。
巨噬细胞和分子治疗对耳蜗突触变性和修复和听力恢复的治疗
并可能导致鉴定出新型的基于分裂的治疗方法,以实现“隐藏听力损失”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tejbeer Kaur其他文献
Tejbeer Kaur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tejbeer Kaur', 18)}}的其他基金
Innate Immunity to Spiral Ganglion Neuron Degeneration
对螺旋神经节神经元变性的先天免疫
- 批准号:
10640178 - 财政年份:2022
- 资助金额:
$ 25.55万 - 项目类别:
Innate Immunity to Spiral Ganglion Neuron Degeneration
对螺旋神经节神经元变性的先天免疫
- 批准号:
10880051 - 财政年份:2022
- 资助金额:
$ 25.55万 - 项目类别:
Contribution of Macrophages and Fractalkine Towards Degeneration and Repair of Cochlear Synapses
巨噬细胞和分形蛋白对耳蜗突触退化和修复的贡献
- 批准号:
10579968 - 财政年份:2021
- 资助金额:
$ 25.55万 - 项目类别:
ROLE OF MACROPHAGES IN NOISE-INDUCED COCHLEAR SYNAPTOPATHY AND NEUROPATHY
巨噬细胞在噪声引起的耳蜗突触病和神经病中的作用
- 批准号:
9098921 - 财政年份:2016
- 资助金额:
$ 25.55万 - 项目类别:
相似国自然基金
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Contribution of Macrophages and Fractalkine Towards Degeneration and Repair of Cochlear Synapses
巨噬细胞和分形蛋白对耳蜗突触退化和修复的贡献
- 批准号:
10579968 - 财政年份:2021
- 资助金额:
$ 25.55万 - 项目类别:
Efficacy and Mechanisms of Mild Therapeutic Hypothermia for Hearing Preservation from NIHL
NIHL 轻度低温治疗对听力保护的疗效和机制
- 批准号:
10321892 - 财政年份:2020
- 资助金额:
$ 25.55万 - 项目类别:
Efficacy and Mechanisms of Mild Therapeutic Hypothermia for Hearing Preservation from NIHL
NIHL 轻度低温治疗对听力保护的疗效和机制
- 批准号:
9911048 - 财政年份:2020
- 资助金额:
$ 25.55万 - 项目类别:
The Middle Ear Muscle Reflex and the Diagnosis of Cochlear Neuropathy
中耳肌肉反射与耳蜗神经病的诊断
- 批准号:
8951597 - 财政年份:2015
- 资助金额:
$ 25.55万 - 项目类别:
The Middle Ear Muscle Reflex and the Diagnosis of Cochlear Neuropathy
中耳肌肉反射与耳蜗神经病的诊断
- 批准号:
8836191 - 财政年份:2015
- 资助金额:
$ 25.55万 - 项目类别: