Functional Organization of the Cerebral Cortex and Basal Ganglia

大脑皮层和基底神经节的功能组织

基本信息

项目摘要

Advances in molecular genetic techniques are revealing new details of the neuroanatomical organization of brain circuitry and the functional role of these circuits in behavior. Engineered viral vector constructs have been developed to label axonal projections of targeted neurons with unprecedented clarity, while others allow for retrograde trans-synaptic labeling of neurons providing inputs or anterograde trans-synaptic labeling of post-synaptic targets of axonal projections. Development of optogenetic and DREADD techniques provide the ability to functionally manipulate neural circuits to study their role in behavior while calcium indicators provide the ability to analyze the physiologic activity in targeted neuron populations. Together these approaches provide new insights into the functional organization of neural circuits. For example, optogenetic studies, using light activation of Channel Rhodopsin (ChR), have demonstrated the ability to functionally manipulate specific neural pathways to determine their role in behaviors including fear memory, anxiety, feeding, and movement. The analytic potential of these approaches is enhanced by the ability to target specific neuron populations, which are defined components of neural circuits. One approach involves the use of transgenic Cre-driver mouse lines in which Cre-recombinase is expressed under the control of gene-specific promoters. In recent years as part of the GENSAT project we characterized BAC-Cre driver lines that allow for targeting components of the neural circuits of the cerebral cortex and basal ganglia (Gerfen et al., 2013). Of particular significance, lines were produced with expression in subtypes of cortical neurons distributed in different layers with specific patterns of axonal projections and in the two main circuits of the basal ganglia, the direct and indirect striatal projection pathways. These BAC-Cre lines are widely used in research laboratories around the world, being used in over 300 publications per year in studies to determine the function of specific neuronal brain circuits. In the past year we collaborated with investigators in NIMH and NEI, at the Howard Hughes Medical Institute Janelia Farms Research, and the University of Pittsburgh in studies that used the BAC-Cre lines to determine the relationship between the organization of information transfer between sensory, motor and association cortical areas and the planning and initiation of movements. During this year neuroanatomical techniques were developed to analyze the functional organization of the relationship between the cerebral cortex and basal ganglia. Our work focuses on the organization of neural circuits responsible for integrating different modes of sensory and experiential information that is utilized in the planning and execution of behavior. To do this we use viral vectors that label the axons of specific cortical neuron subtypes in GENSAT BAC-Cre mouse lines. Viral vectors injected into different cortical areas in BAC-Cre lines expressing in cortical layers 2/3 and 5a map the connections between functional cortical areas, which are responsible for integration of information, while injections in BAC-Cre lines expressing in layers 5b and 6 label axonal projections to subcortical systems, which are involved in turning cortical activity into behavior. The labeled axons are visualized using immunohistochemical techniques in coronal brain sections and imaged to reveal multiple injections in different cortical areas reveal specific patterns of connectivity between functionally distinct cortical areas and subcortical systems. To analyze these complex patterns of connectivity we developed an efficient process for reconstructing the images through the whole mouse brain using the NIH ImageJ program (Paletzki and Gerfen, 2015). These fully reconstructed whole mouse brain image sets displaying the axonal projections of specific neuron subtypes in multiple cortical areas are registered to a common mouse brain atlas. The ability to register patterns of axonal projections obtained from many brains provides the ability to analyze the complex organization of the neural circuits integrating information between functional cortical areas and how it is transmitted to subcortical circuits responsible for behavior (Eastwood et al., 2019; Tappan et al., 2019). Work with the Janelia MouseLight Project provides an exciting advance in analysis of the connectivity of cortical neural circuits (Economo et al., 2016; Gerfen et al., 2017). The MouseLight Project has developed a platform for tracing the axonal projections of individual cortical neurons through the whole brain. Ongoing studies of the MouseLight project have analyzed the organization of reciprocal connections between the motor cortex and the thalamus at the single neuron level to reveal distinct subtypes of both cortical and thalamic neurons with specific patterns of axonal arborization (Winnubst et al., 2019). Collaborative studies with the Svoboda lab at Janelia Research Campus identified neuronal circuits between a premotor cortical area (ALM), the thalamus, midbrain motor regions and the brainstem motor nuclei as critical to goal directed behavior (Guo et al., 2017). These studies demonstrated that reciprocal connections between the cortex and thalamus establish the preparatory activity that precedes the movement. Further studies established that the ALM thalamic projecting neurons responsible for preparatory activity are distinct from ALM neurons that initiate the motor behavior through their brainstem projecting neurons (Economo et al, 2018). Ongoing studies with Hidehiko Inagaki, who left Janelia to start his own lab, are studying the involvement of the midbrain motor region, which is involved in conveying sensory information to the ALM, thalamic and brainstem circuits. In a collaboration with the Krauzlis lab in NEI, the role of the striatum in perceptual decision-making as distinguished from action selection was studied. Using a visual orientation-change detection task combined with selective optogenetic manipulation of either the direct or indirect striatal pathways it was demonstrated that activation of the direct pathway significantly increased the response to the sensory stimulus and not due to a general increase in response initiation (Wang et al., 2018). A subsequent study demonstrated the causal involvement of the superior colliculus, the output target of the striatal pathways, in perceptual decision making (Wang et al., 2020). With Bryan Hooks at the University of Pittsburgh we studied the organization of cortical inputs to the striatum (Hooks et al., 2018). Cortico-striatal inputs are organized topographically generally with projections distributed over an area within the striatum such that there is convergence of inputs. This convergence integrates information from different cortical areas, such as from sensory and motor areas. In our study we used Cre-driver lines combined with injections of viral vectors that label axonal projections to map the projections from subtypes of layer 5 cortical neurons into the striatum. Data demonstrated that motor and sensory areas that are inter-connected project to overlapping regions in the striatum. The precision of the topographic organization of cortico-striatal inputs decreases along a gradient from primary somatosensory cortex to primary and secondary cortical areas. These data provide new insights into how information from the cortex is processed through the basal ganglia to affect behavior. The analytic process used in this study was further developed to allow researchers to analyze changes in neuronal activity in behavioral models to identify the neural circuits responsible for mental and neurologic disorders (Eastwood et al., 2019; Tappan et al, 2019).
分子遗传技术的进步揭示了脑电路神经解剖组织的新细节以及这些电路在行为中的功能作用。已经开发了工程的病毒矢量构建体,以标记具有前所未有的明确性的靶向神经元的轴突投影,而另一些则允许对逆行的反式突触标记神经元进行输入或辅助反式跨突触标记的轴突投射后突触靶标。光遗传学和Dreadd技术的开发提供了能够操纵神经回路以研究其在行为中的作用的能力,而钙指标则可以分析目标神经元种群中的生理活性。这些方法共同为神经回路的功能组织提供了新的见解。例如,使用通道视紫红蛋白(CHR)的光激活的光遗传学研究证明了能够操纵特定神经途径的能力,以确定其在行为中的作用,包括恐惧记忆,焦虑,进食和运动。这些方法的分析潜力通过靶向特定神经元种群的能力增强,这些神经元群体定义为神经回路的组成部分。一种方法涉及使用转基因CRE-DRIVER小鼠系,其中在基因特异性启动子的控制下表达CRE聚合酶。 近年来,作为GENSAT项目的一部分,我们表征了BAC-CRE驱动线,这些驱动线允许靶向大脑皮层和基底神经节神经回路的组成部分(Gerfen等,2013)。特别重要的是,在分布在不同层的皮质神经元的亚型中产生了线,这些轴具有轴突投影的特定模式,以及基底神经节的两个主要电路,即直接和间接的纹状体投影途径。这些BAC-CRE系列在世界各地的研究实验室中广泛使用,每年在研究中使用300多个出版物,以确定特定的神经元素回路的功能。 在过去的一年中,我们与NIMH和NEI的调查员,霍华德·休斯医学院Janelia Farms Research和匹兹堡大学合作,利用BAC-CRE线来确定感官,运动和协会皮质区域和协会皮层区域之间的信息传递之间的关系与运动和运动的计划和运动开始。在今年,开发了神经解剖技术来分析大脑皮层和基底神经节之间关系的功能组织。 我们的工作重点是负责整合行为计划和执行中使用的不同感官和经验信息模式的神经回路的组织。为此,我们使用的病毒载体将特定皮质神经元亚型的轴突标记为Gensat Bac-Cre小鼠系。 Viral vectors injected into different cortical areas in BAC-Cre lines expressing in cortical layers 2/3 and 5a map the connections between functional cortical areas, which are responsible for integration of information, while injections in BAC-Cre lines expressing in layers 5b and 6 label axonal projections to subcortical systems, which are involved in turning cortical activity into behavior.使用冠状脑切片中的免疫组织化学技术可视化标记的轴突,并成像以揭示不同皮质区域中的多次注射揭示了功能不同的皮质区域和皮层系统之间的连通性模式。为了分析这些复杂的连接模式,我们开发了一个有效的过程,可以使用NIH ImageJ程序(Paletzki and Gerfen,2015)通过整个小鼠大脑重建图像。这些完全重建的全鼠大脑图像集显示了多个皮质区域中特定神经元亚型的轴突投影,已注册为常见的小鼠脑图集。从许多大脑中获得的轴突投影模式的能力提供了分析神经回路的复杂组织的能力,该神经回路将功能性皮质区域之间的信息整合在一起,以及如何将其传播到负责行为的皮层电路(Eastwood等,2019; Tappan等,2019)。 与Janelia Mouselight项目的合作为分析皮质神经回路的连通性提供了令人兴奋的进步(Economo等,2016; Gerfen等,2017)。 Mouselight项目开发了一个平台,用于追踪整个大脑中单个皮质神经元的轴突投射。对Mouselight项目的持续研究已经分析了单个神经元水平的运动皮质和丘脑之间的相互联系的组织,以揭示具有轴突轴突化特定模式的皮质和丘脑神经元的独特亚型(Winnubst等,2019)。 与Janelia Research校园的Svoboda Lab的合作研究确定了前皮质区域(ALM),Thalamus,Midbrain Motor区域和脑干运动核之间的神经元电路至关重要(Guo等人,2017年)。 这些研究表明,皮质和丘脑之间的相互联系建立了在运动之前的准备活动。 进一步的研究表明,负责预备活动的ALM丘脑投射神经元与通过其脑干投射神经元启动运动行为的ALM神经元不同(Economo等,2018)。离开Janelia开始自己的实验室的Hidehiko Inagaki正在进行的研究正在研究中脑运动区的参与,该地区参与将感觉信息传达给ALM,丘脑和脑干电路。 在与NEI中的Krauzlis实验室的合作中,研究了纹状体在感知决策中的作用,与行动选择区分开。 使用视觉方向变化检测任务与直接或间接纹状体途径的选择性光遗传操作结合在一起,证明直接途径的激活显着增加了对感觉刺激的反应,而不是由于响应起始的一般增加而增加(Wang等,2018)。 随后的研究表明,在感知决策中,上丘的因果关系(纹状体途径的输出靶标)的因果关系(Wang等,2020)。 匹兹堡大学的布莱恩·胡克斯(Bryan Hooks)研究了纹状体的皮质输入组织(Hooks等,2018)。皮质 - 纹状体输入在地形上是整理的,其投影分布在纹状体内的区域上,因此输入的收敛性。这种融合整合了来自不同皮质区域的信息,例如来自感觉和运动区域。在我们的研究中,我们使用了Cre-Driver系列与病毒载体注射的结合,这些病毒矢量标记了轴突投影,以将5层皮质神经元亚型的投影映射到纹状体中。数据表明,与纹状体中重叠区域相互联系的运动区域和感觉区域。皮质 - 纹状体输入的地形组织的精度沿梯度从原发性体感皮质到原发性皮质和次级皮质区域降低。这些数据提供了有关如何通过基底神经节处理来自皮质的信息以影响行为的新见解。进一步开发了本研究中使用的分析过程,以使研究人员能够在行为模型中分析神经元活动的变化,以识别负责精神和神经系统疾病的神经回路(Eastwood等,2019; Tappan等,2019)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHARLES R GERFEN其他文献

CHARLES R GERFEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHARLES R GERFEN', 18)}}的其他基金

DOPAMINE AND MUSCARINIC MEDIATED STRIATAL GENE REGULATION
多巴胺和毒蕈碱介导的纹状体基因调节
  • 批准号:
    6243645
  • 财政年份:
    1997
  • 资助金额:
    $ 69.88万
  • 项目类别:
Functional Organization Of The Basal Ganglia
基底神经节的功能组织
  • 批准号:
    6541791
  • 财政年份:
  • 资助金额:
    $ 69.88万
  • 项目类别:
FUNCTIONAL ORGANIZATION OF THE BASAL GANGLIA
基底神经节的功能组织
  • 批准号:
    6432809
  • 财政年份:
  • 资助金额:
    $ 69.88万
  • 项目类别:
Functional Organization Of The Basal Ganglia
基底神经节的功能组织
  • 批准号:
    6980256
  • 财政年份:
  • 资助金额:
    $ 69.88万
  • 项目类别:
Functional Organization of the Cerebral Cortex and Basal Ganglia
大脑皮层和基底神经节的功能组织
  • 批准号:
    9568245
  • 财政年份:
  • 资助金额:
    $ 69.88万
  • 项目类别:
Functional Organization Of The Basal Ganglia
基底神经节的功能组织
  • 批准号:
    7969299
  • 财政年份:
  • 资助金额:
    $ 69.88万
  • 项目类别:
Functional Organization Of The Basal Ganglia
基底神经节的功能组织
  • 批准号:
    7136234
  • 财政年份:
  • 资助金额:
    $ 69.88万
  • 项目类别:
Functional Organization of the Cerebral Cortex and Basal Ganglia
大脑皮层和基底神经节的功能组织
  • 批准号:
    10703901
  • 财政年份:
  • 资助金额:
    $ 69.88万
  • 项目类别:
Functional Organization Of The Basal Ganglia
基底神经节的功能组织
  • 批准号:
    8158073
  • 财政年份:
  • 资助金额:
    $ 69.88万
  • 项目类别:
FUNCTIONAL ORGANIZATION OF THE BASAL GANGLIA
基底神经节的功能组织
  • 批准号:
    6290539
  • 财政年份:
  • 资助金额:
    $ 69.88万
  • 项目类别:

相似国自然基金

肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
  • 批准号:
    82074395
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
  • 批准号:
    81801333
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
  • 批准号:
    81800898
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
  • 批准号:
    31860716
  • 批准年份:
    2018
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
  • 批准号:
    10590033
  • 财政年份:
    2024
  • 资助金额:
    $ 69.88万
  • 项目类别:
Arlene George F32
阿琳·乔治 F32
  • 批准号:
    10722238
  • 财政年份:
    2024
  • 资助金额:
    $ 69.88万
  • 项目类别:
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
  • 批准号:
    10825287
  • 财政年份:
    2024
  • 资助金额:
    $ 69.88万
  • 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
  • 批准号:
    10465010
  • 财政年份:
    2023
  • 资助金额:
    $ 69.88万
  • 项目类别:
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
  • 批准号:
    10556087
  • 财政年份:
    2023
  • 资助金额:
    $ 69.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了