Functional Organization of the Cerebral Cortex and Basal Ganglia
大脑皮层和基底神经节的功能组织
基本信息
- 批准号:10266577
- 负责人:
- 金额:$ 69.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AT-Hook MotifsAffectAnimal ModelAnxietyAreaAtlasesAttention deficit hyperactivity disorderAxonBacterial Artificial ChromosomesBasal GangliaBasal Ganglia DiseasesBehaviorBehavior ControlBehavioral ModelBrainBrain StemBrain imagingBrain regionCell NucleusCerebral cortexCollaborationsCommunitiesComplexCorpus striatum structureCre driverDataDecision MakingDetectionDevelopmentDopamineDopamine D2 ReceptorEngineeringEnterobacteria phage P1 Cre recombinaseEnzymesFarming environmentFeedbackFunctional disorderFundingGene Expression RegulationGenesGenetic EngineeringGenetic TechniquesGlutamatesGoalsImageIndividualInjectionsInstitutesLabelLaboratoriesLaboratory ResearchLeftLesionLightLoxP-flanked alleleMapsMediatingMedicalMental disordersMethodsMidbrain structureMolecular GeneticsMotorMotor CortexMovementMusNational Institute of Mental HealthNational Institute of Neurological Disorders and StrokeNeural PathwaysNeuroanatomyNeuromodulatorNeuronal PlasticityNeuronsNeurosciences ResearchNeurotransmitter ReceptorOutputParkinson DiseasePathway interactionsPatternPhysiologicalPopulationProcessProsencephalonProtein KinasePsychotropic DrugsPublicationsRegulationResearchResearch PersonnelRhodopsinRoleSensorySignal PathwaySignal Transduction PathwaySomatosensory CortexSynapsesSystemTechniquesThalamic structureTranscriptional ActivationTransgenic MiceTransgenic OrganismsUnited States National Institutes of HealthUniversitiesViral VectorVisualWorkbrain circuitrycalcium indicatorclinical movement disorderdesigner receptors exclusively activated by designer drugsfear memoryfeedinginformation organizationinsightinterestmotor behaviornervous system disorderneural circuitneuronal circuitryoptogeneticsprogramspromoterprotein activationrelating to nervous systemresponsesensory stimulussuperior colliculus Corpora quadrigeminatooltranscription factor
项目摘要
Advances in molecular genetic techniques are revealing new details of the neuroanatomical organization of brain circuitry and the functional role of these circuits in behavior. Engineered viral vector constructs have been developed to label axonal projections of targeted neurons with unprecedented clarity, while others allow for retrograde trans-synaptic labeling of neurons providing inputs or anterograde trans-synaptic labeling of post-synaptic targets of axonal projections. Development of optogenetic and DREADD techniques provide the ability to functionally manipulate neural circuits to study their role in behavior while calcium indicators provide the ability to analyze the physiologic activity in targeted neuron populations. Together these approaches provide new insights into the functional organization of neural circuits. For example, optogenetic studies, using light activation of Channel Rhodopsin (ChR), have demonstrated the ability to functionally manipulate specific neural pathways to determine their role in behaviors including fear memory, anxiety, feeding, and movement. The analytic potential of these approaches is enhanced by the ability to target specific neuron populations, which are defined components of neural circuits. One approach involves the use of transgenic Cre-driver mouse lines in which Cre-recombinase is expressed under the control of gene-specific promoters.
In recent years as part of the GENSAT project we characterized BAC-Cre driver lines that allow for targeting components of the neural circuits of the cerebral cortex and basal ganglia (Gerfen et al., 2013). Of particular significance, lines were produced with expression in subtypes of cortical neurons distributed in different layers with specific patterns of axonal projections and in the two main circuits of the basal ganglia, the direct and indirect striatal projection pathways. These BAC-Cre lines are widely used in research laboratories around the world, being used in over 300 publications per year in studies to determine the function of specific neuronal brain circuits.
In the past year we collaborated with investigators in NIMH and NEI, at the Howard Hughes Medical Institute Janelia Farms Research, and the University of Pittsburgh in studies that used the BAC-Cre lines to determine the relationship between the organization of information transfer between sensory, motor and association cortical areas and the planning and initiation of movements. During this year neuroanatomical techniques were developed to analyze the functional organization of the relationship between the cerebral cortex and basal ganglia.
Our work focuses on the organization of neural circuits responsible for integrating different modes of sensory and experiential information that is utilized in the planning and execution of behavior. To do this we use viral vectors that label the axons of specific cortical neuron subtypes in GENSAT BAC-Cre mouse lines. Viral vectors injected into different cortical areas in BAC-Cre lines expressing in cortical layers 2/3 and 5a map the connections between functional cortical areas, which are responsible for integration of information, while injections in BAC-Cre lines expressing in layers 5b and 6 label axonal projections to subcortical systems, which are involved in turning cortical activity into behavior. The labeled axons are visualized using immunohistochemical techniques in coronal brain sections and imaged to reveal multiple injections in different cortical areas reveal specific patterns of connectivity between functionally distinct cortical areas and subcortical systems. To analyze these complex patterns of connectivity we developed an efficient process for reconstructing the images through the whole mouse brain using the NIH ImageJ program (Paletzki and Gerfen, 2015). These fully reconstructed whole mouse brain image sets displaying the axonal projections of specific neuron subtypes in multiple cortical areas are registered to a common mouse brain atlas. The ability to register patterns of axonal projections obtained from many brains provides the ability to analyze the complex organization of the neural circuits integrating information between functional cortical areas and how it is transmitted to subcortical circuits responsible for behavior (Eastwood et al., 2019; Tappan et al., 2019).
Work with the Janelia MouseLight Project provides an exciting advance in analysis of the connectivity of cortical neural circuits (Economo et al., 2016; Gerfen et al., 2017). The MouseLight Project has developed a platform for tracing the axonal projections of individual cortical neurons through the whole brain. Ongoing studies of the MouseLight project have analyzed the organization of reciprocal connections between the motor cortex and the thalamus at the single neuron level to reveal distinct subtypes of both cortical and thalamic neurons with specific patterns of axonal arborization (Winnubst et al., 2019).
Collaborative studies with the Svoboda lab at Janelia Research Campus identified neuronal circuits between a premotor cortical area (ALM), the thalamus, midbrain motor regions and the brainstem motor nuclei as critical to goal directed behavior (Guo et al., 2017). These studies demonstrated that reciprocal connections between the cortex and thalamus establish the preparatory activity that precedes the movement. Further studies established that the ALM thalamic projecting neurons responsible for preparatory activity are distinct from ALM neurons that initiate the motor behavior through their brainstem projecting neurons (Economo et al, 2018). Ongoing studies with Hidehiko Inagaki, who left Janelia to start his own lab, are studying the involvement of the midbrain motor region, which is involved in conveying sensory information to the ALM, thalamic and brainstem circuits.
In a collaboration with the Krauzlis lab in NEI, the role of the striatum in perceptual decision-making as distinguished from action selection was studied. Using a visual orientation-change detection task combined with selective optogenetic manipulation of either the direct or indirect striatal pathways it was demonstrated that activation of the direct pathway significantly increased the response to the sensory stimulus and not due to a general increase in response initiation (Wang et al., 2018). A subsequent study demonstrated the causal involvement of the superior colliculus, the output target of the striatal pathways, in perceptual decision making (Wang et al., 2020).
With Bryan Hooks at the University of Pittsburgh we studied the organization of cortical inputs to the striatum (Hooks et al., 2018). Cortico-striatal inputs are organized topographically generally with projections distributed over an area within the striatum such that there is convergence of inputs. This convergence integrates information from different cortical areas, such as from sensory and motor areas. In our study we used Cre-driver lines combined with injections of viral vectors that label axonal projections to map the projections from subtypes of layer 5 cortical neurons into the striatum. Data demonstrated that motor and sensory areas that are inter-connected project to overlapping regions in the striatum. The precision of the topographic organization of cortico-striatal inputs decreases along a gradient from primary somatosensory cortex to primary and secondary cortical areas. These data provide new insights into how information from the cortex is processed through the basal ganglia to affect behavior. The analytic process used in this study was further developed to allow researchers to analyze changes in neuronal activity in behavioral models to identify the neural circuits responsible for mental and neurologic disorders (Eastwood et al., 2019; Tappan et al, 2019).
分子遗传学技术的进步揭示了大脑回路的神经解剖组织的新细节以及这些回路在行为中的功能作用。工程病毒载体构建体已被开发用于以前所未有的清晰度标记目标神经元的轴突投影,而其他载体则允许对提供输入的神经元进行逆行跨突触标记,或对轴突投影的突触后目标进行顺行跨突触标记。光遗传学和 DREADD 技术的发展提供了功能性操纵神经回路以研究其在行为中的作用的能力,而钙指示剂提供了分析目标神经元群体的生理活动的能力。这些方法共同为神经回路的功能组织提供了新的见解。例如,利用光激活视紫红质通道 (ChR) 的光遗传学研究已证明能够功能性地操纵特定的神经通路,以确定它们在恐惧记忆、焦虑、进食和运动等行为中的作用。这些方法的分析潜力通过针对特定神经元群体(神经回路的定义组成部分)的能力得到增强。一种方法涉及使用转基因 Cre-driver 小鼠系,其中 Cre-重组酶在基因特异性启动子的控制下表达。
近年来,作为 GENSAT 项目的一部分,我们对 BAC-Cre 驱动线进行了表征,该驱动线允许靶向大脑皮层和基底神经节的神经回路组件(Gerfen 等人,2013)。特别重要的是,产生了在皮质神经元亚型中表达的细胞系,这些神经元分布在具有特定轴突投射模式的不同层中,并且在基底神经节的两个主要回路(直接和间接纹状体投射通路)中表达。这些 BAC-Cre 系广泛用于世界各地的研究实验室,每年有 300 多篇出版物用于确定特定神经元脑回路功能的研究。
在过去的一年里,我们与 NIMH 和 NEI、霍华德休斯医学研究所 Janelia Farms Research 以及匹兹堡大学的研究人员合作,进行了使用 BAC-Cre 线来确定感觉、信息传递组织之间的关系的研究。运动和联合皮层区域以及运动的规划和启动。这一年,神经解剖学技术得到发展,用于分析大脑皮层和基底神经节之间关系的功能组织。
我们的工作重点是神经回路的组织,负责整合不同模式的感官和经验信息,这些信息用于行为的规划和执行。为此,我们使用病毒载体标记 GENSAT BAC-Cre 小鼠系中特定皮质神经元亚型的轴突。病毒载体注射到皮质层 2/3 和 5a 表达的 BAC-Cre 系中的不同皮质区域,映射功能皮质区域之间的连接,负责信息整合,而注射到皮质层 5b 和 6 表达的 BAC-Cre 系中将轴突投射标记为皮层下系统,这些系统参与将皮层活动转化为行为。使用免疫组织化学技术在冠状脑切片中对标记的轴突进行可视化,并成像以揭示不同皮质区域的多次注射,揭示功能不同的皮质区域和皮质下系统之间的特定连接模式。为了分析这些复杂的连接模式,我们开发了一种有效的过程,使用 NIH ImageJ 程序重建整个小鼠大脑的图像(Paletzki 和 Gerfen,2015)。这些完全重建的整个小鼠大脑图像集显示了多个皮质区域中特定神经元亚型的轴突投影,并被注册到一个共同的小鼠大脑图谱上。记录从许多大脑获得的轴突投影模式的能力提供了分析神经回路的复杂组织的能力,该神经回路整合了功能性皮层区域之间的信息以及如何将其传输到负责行为的皮层下回路(Eastwood等人,2019;Tappan等人,2019)。
与 Janelia MouseLight 项目的合作在皮层神经回路连接性分析方面取得了令人兴奋的进展(Economo 等人,2016 年;Gerfen 等人,2017 年)。 MouseLight 项目开发了一个平台,用于追踪整个大脑中单个皮层神经元的轴突投影。 MouseLight 项目正在进行的研究分析了单个神经元水平上运动皮层和丘脑之间相互连接的组织,以揭示具有特定轴突树枝化模式的皮层和丘脑神经元的不同亚型(Winnubst 等人,2019)。
与 Janelia 研究园区 Svoboda 实验室的合作研究发现,运动前皮层区 (ALM)、丘脑、中脑运动区和脑干运动核之间的神经元回路对于目标导向行为至关重要(Guo 等,2017)。 这些研究表明,皮层和丘脑之间的相互联系建立了运动之前的准备活动。 进一步的研究表明,负责准备活动的 ALM 丘脑投射神经元与通过脑干投射神经元启动运动行为的 ALM 神经元不同 (Economo et al, 2018)。稻垣英彦 (Hidehiko Inagaki) 离开珍妮莉亚 (Janelia) 创办了自己的实验室,目前正在进行的研究是研究中脑运动区的参与情况,该区域参与向 ALM、丘脑和脑干回路传递感觉信息。
与 NEI 的 Krauzlis 实验室合作,研究了纹状体在感知决策中的作用(区别于行动选择)。 使用视觉方向变化检测任务与直接或间接纹状体通路的选择性光遗传学操作相结合,证明直接通路的激活显着增加了对感觉刺激的反应,而不是由于反应启动的普遍增加(Wang等人,2018)。 随后的一项研究证明了上丘(纹状体通路的输出目标)在知觉决策中的因果关系(Wang et al., 2020)。
我们与匹兹堡大学的 Bryan Hooks 一起研究了皮质输入纹状体的组织(Hooks et al., 2018)。皮质纹状体输入通常按地形组织,投影分布在纹状体内的某个区域上,以便输入会聚。这种融合整合了来自不同皮质区域的信息,例如来自感觉和运动区域的信息。在我们的研究中,我们使用 Cre-driver 线与注射标记轴突投影的病毒载体相结合,将第 5 层皮质神经元亚型的投影映射到纹状体。数据表明,相互连接的运动和感觉区域投射到纹状体的重叠区域。皮质纹状体输入的地形组织的精度沿着从初级体感皮层到初级和次级皮质区域的梯度下降。这些数据为了解来自皮层的信息如何通过基底神经节处理以影响行为提供了新的见解。本研究中使用的分析过程得到进一步发展,使研究人员能够分析行为模型中神经元活动的变化,以确定导致精神和神经系统疾病的神经回路(Eastwood 等人,2019;Tappan 等人,2019)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHARLES R GERFEN其他文献
CHARLES R GERFEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHARLES R GERFEN', 18)}}的其他基金
DOPAMINE AND MUSCARINIC MEDIATED STRIATAL GENE REGULATION
多巴胺和毒蕈碱介导的纹状体基因调节
- 批准号:
6243645 - 财政年份:1997
- 资助金额:
$ 69.88万 - 项目类别:
Functional Organization of the Cerebral Cortex and Basal Ganglia
大脑皮层和基底神经节的功能组织
- 批准号:
9568245 - 财政年份:
- 资助金额:
$ 69.88万 - 项目类别:
Functional Organization of the Cerebral Cortex and Basal Ganglia
大脑皮层和基底神经节的功能组织
- 批准号:
10703901 - 财政年份:
- 资助金额:
$ 69.88万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
- 批准号:
10825287 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 69.88万 - 项目类别:
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
- 批准号:
10556087 - 财政年份:2023
- 资助金额:
$ 69.88万 - 项目类别: