Data Harmonization
数据协调
基本信息
- 批准号:10267752
- 负责人:
- 金额:$ 66.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAlabamaAlgorithmsAmerican Heart AssociationAmerican Stroke AssociationAssessment toolAwardBig Data to KnowledgeCategoriesCause of DeathCohort StudiesComplex AnalysisDataDevelopmentEthnic OriginEthnic groupEtiologyEventFundingGeographyGuidelinesHemorrhageIndividualLongitudinal cohort studyMachine LearningMethodsModelingNational Heart, Lung, and Blood InstituteNational Institute of Neurological Disorders and StrokeOutcomePatient Self-ReportPatientsPerformancePrevention GuidelinesPrevention strategyPrimary PreventionRaceResearchRisk AssessmentRisk FactorsStrokeStroke preventionTechniquesTimeUnited States National Institutes of HealthUniversitiesUpdateValidationbasecohortcomputing resourcesdata exchangedata harmonizationdatabase of Genotypes and Phenotypesdeep learningdesignexperiencegenetic informationoffspringprecision medicinepredictive modelingrepositoryrisk prediction modelrisk stratificationsexstroke modelstroke risktoolweb services
项目摘要
PROJECT SUMMARY
Stroke is the fifth most prevalent cause of death in the U.S. afflicting nearly 800,000 per year. About three
quarters of strokes are first events, underscoring the importance of primary prevention. Designing optimal
preventive strategies requires identification of risk factors and estimation of the risk of stroke. The most recent
American Heart Association (AHA)/American Stroke Association Guidelines for the Primary Prevention of
Stroke conclude that “an ideal stroke risk assessment tool that is simple, is widely applicable and accepted,
and takes into account the effects of multiple risk factors does not exist.” One of the most commonly
recommended predictive models is the Framingham Stroke Profile, developed and updated more than 25
years ago. Newer models have been proposed (including the Self-Reported Stroke Risk Stratification tool from
the REGARDS study) but have not been thoroughly validated. Consequently, the Primary Prevention of Stroke
guidelines call for more research “to validate risk assessment tools across age, sex, and race/ethnic groups”
and “to evaluate whether any of the more recently identified risk factors add to the predictive accuracy of
existing scales”.
We propose to address these gaps by aggregating and harmonizing existing patient-level data collected as
part of longitudinal cohort studies supported by the NINDS and NHLBI. The data will be obtained through a
partnership with the coordinating center for the REGARDS Study at the University of Alabama at Birmingham
and by a request submitted to the NIH dbGap repository to obtain data from the Framingham Offspring, ARIC
and MESA cohorts. At the same time, we will expand the advanced machine learning techniques developed
as part of our currently funded NIH BD2K award to Duke. We will apply these models to the harmonized data
to facilitate development and validation of prediction tool for primary strokes. These complex analyses will
require advanced computational resources that will utilize the AHA's Precision Medicine Platform (PMP), built
based on Amazon Web Services.
项目概要
中风是美国第五大最常见的死亡原因,每年有近 80 万人受到中风的影响。
四分之一的中风是首发事件,强调了设计最佳预防的重要性。
预防策略需要识别危险因素并估计最新的中风风险。
美国心脏协会 (AHA)/美国中风协会初级预防指南
中风的结论是“一种理想的中风风险评估工具,简单、广泛适用和接受,
并考虑到多种风险因素的影响,但最常见的风险因素之一并不存在。”
推荐的预测模型是 Framingham 中风概况,已开发和更新超过 25 个
几年前就提出了新的模型(包括自我报告的中风风险分层工具)。
REGARDS 研究)但尚未经过彻底验证,中风的一级预防。
指南呼吁进行更多研究“验证跨年龄、性别和种族/族裔群体的风险评估工具”
以及“评估最近发现的任何风险因素是否会增加预测的准确性
现有规模”。
我们建议通过汇总和协调现有的患者级数据来解决这些差距
NINDS 和 NHLBI 支持的纵向队列研究的一部分数据将通过
与阿拉巴马大学伯明翰分校 REGARDS 研究协调中心合作
并通过向 NIH dbGap 存储库请求从 Framingham Offspring、ARIC 获取提交的数据
与此同时,我们将扩展开发的先进机器学习技术。
作为我们目前资助的 NIH BD2K 奖的一部分,我们将把这些模型应用到统一数据中。
促进原发性中风预测工具的开发和验证。
需要先进的计算资源,利用 AHA 的精准医学平台 (PMP)
基于亚马逊网络服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Henao Giraldo其他文献
Ricardo Henao Giraldo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Henao Giraldo', 18)}}的其他基金
Machine learning driven transthoracic echocardiographic analysis and screening for cardiac amyloidosis
机器学习驱动的经胸超声心动图分析和心脏淀粉样变性筛查
- 批准号:
10081836 - 财政年份:2020
- 资助金额:
$ 66.56万 - 项目类别:
Enhanced x-ray angiography analysis and interpretation using deep learning
使用深度学习增强 X 射线血管造影分析和解释
- 批准号:
10000961 - 财政年份:2018
- 资助金额:
$ 66.56万 - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
- 批准号:82301214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Drive to Zero: Developing a digital cohort to understand the drivers of non-sustained viral suppression in the Deep South
驱向零:开发数字队列以了解南方腹地非持续病毒抑制的驱动因素
- 批准号:
10675270 - 财政年份:2023
- 资助金额:
$ 66.56万 - 项目类别:
Sleep and Circadian Contributions to Nighttime Blood Pressure Rhythms (SCN-BP)
睡眠和昼夜节律对夜间血压节律 (SCN-BP) 的影响
- 批准号:
10577473 - 财政年份:2023
- 资助金额:
$ 66.56万 - 项目类别:
Multisite Implementation of COMPRENDO (ChildhOod Malignancy Peer REsearch NavigatiOn) to improve participation of Hispanic children in cancer clinical trials
多站点实施 COMPRENDO(儿童恶性肿瘤同行研究导航)以提高西班牙裔儿童对癌症临床试验的参与
- 批准号:
10639968 - 财政年份:2023
- 资助金额:
$ 66.56万 - 项目类别:
Racially-associated MRI analysis and modeling for predicting aggressive prostate cancer
用于预测侵袭性前列腺癌的种族相关 MRI 分析和建模
- 批准号:
10659602 - 财政年份:2023
- 资助金额:
$ 66.56万 - 项目类别: