CRCNS: Modeling Acquisition and Extinction of Fear Memories in Amygdala Circuits

CRCNS:模拟杏仁核回路中恐惧记忆的获取和消除

基本信息

  • 批准号:
    7776621
  • 负责人:
  • 金额:
    $ 25.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-31 至 2012-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall objective of the proposed cross-disciplinary research is to use an integrated computational/experimental approach to study the acquisition and extinction of conditioned fear associations in the neural components of the fear circuit of mammals. We propose an interdependent series of experiments and biologically realistic simulations, using a 'from biology to model, to predictions, and back to biology' theme where experiments will constrain the design of the models ('from biology to model') and discrepancies between the models and expected outcomes will lead to the formulation of hypotheses ('to predictions') that will be tested experimentally ('back to biology'). The computational models will be developed using experimental data from laboratories of two neuroscience Co-PIs. Preliminary models, developed by our group over a period of 21/2 years demonstrate that they can provide significant insights into the intrinsic and synaptic mechanisms associated with learning and neuroplasticity in conditioned fear. The proposed research will expand this collaboration with the following specific aims: 1.To investigate the underlying mechanisms of learning and neuroplasticity in the amygdala related to the acquisition and extinction of conditioned fear using a biologically realistic computational model, and to test model predictions in experiments. From biology to model: Use published biology data (in vitro and in vivo), to investigate neurocomputational properties of single cell models of amygdala nuclei including lateral amygdala (LA), basal amygdala (BA), intercalated cells (ITC), and central nucleus (CeM and CeL). From biology to model and to predictions: Investigate how the key amygdala nuclei interact to acquire and extinguish conditioned fear memories using a biologically realistic network model that includes the single cell models. Make predictions to quantify the relative contributions of the various projections from LA to CeM, and about other mechanisms. From predictions to biology (and back): Assess the effects of fear conditioning and extinction on synaptic responses in the projections from LA to CeL, and CeL to CeM, in an in vitro slice preparation (to be performed in the Par¿ lab). Incorporate findings from experiments and refine the model. 2. To investigate the mechanisms involved in the regulation of amygdala-dependent conditioning and extinction fear memory by the ventro medial prefrontal cortex, using a biologically realistic computational model, and to test model predictions in experiments. From biology to model: Use published biology data (in vitro and in vivo), to investigate the neurocomputational properties of single cells and networks in the pre-limbic (PL) and infra-limbic (IL) regions of the ventral medial prefrontal cortex (vmPFC). From biology to model and to predictions: Determine how the vmPFC regulates amygdala-dependent fear and extinction memories by developing an overall biologically realistic model including the vmPFC and the amygdala (from specific aim 1). Make predictions about the possible connections between vmPFC and the amygdala that may regulate these memories, and the effect of vmPFC inactivation on the tone responses of BA and Ce neurons. From predictions to biology (and back): Assess the effects of vmPFC inactivation on tone responses of BA and Ce neurons during fear conditioning and extinction (to be performed in Quirk lab). Incorporate findings from experiments and refine the model of vmPFC regulation of the amygdala in a single context. Intellectual Merit. The proposed interdisciplinary research will be the first to develop a biologically realistic computational model of the fear circuit. It will facilitate discovery of the learning and neuroplasticity mechanisms that underlie acquisition and extinction of conditioned fear in mammals, and will lead to valuable predictions, and novel directions for experimental research. The approach proposed will also lead to a better understanding of the systems and design principles governing the fear circuit. Broader Impact. The proposed computational model will provide new insights and understanding of a spectrum of psychiatric disorders including PTSD and anxiety disorders, which are thought to arise from deficits in the fear circuit. It will also be a key tool for the development of novel agents and strategies for the treatment of such disorders. Finally, the collaboration will also contribute to the generation of new curricula and materials for undergraduate, graduate and medical student education, and for K-12students.
描述(由申请人提供):所提议的跨学科研究的总体目标是使用综合计算/实验方法来研究哺乳动物恐惧回路的神经组件中条件性恐惧关联的获得和消失。相互依赖的一系列实验和生物学真实模拟,使用“从生物学到模型,到预测,再回到生物学”主题,其中实验将限制模型的设计(“从生物学到模型”)以及模型与预期之间的差异结果将导致提出假设(“预测”),并通过实验进行测试(“回到生物学”)。计算模型将使用我们开发的两个神经科学初步模型实验室的实验数据来开发。小组历时 21/2 年的研究表明,他们可以对与条件性恐惧中的学习和神经可塑性相关的内在和突触机制提供重要的见解。拟议的研究将扩大这种合作,以实现以下具体目标: 1. 调查潜在的原因。机制使用生物学真实的计算模型研究与条件性恐惧的获得和消除相关的杏仁核的学习和神经可塑性,并在实验中测试模型预测从生物学到模型:使用已发表的生物学数据(体外和体内)进行研究。杏仁核单细胞模型的神经计算特性,包括外侧杏仁核 (LA)、基底杏仁核 (BA)、闰细胞 (ITC) 和中央核 (CeM 和 CeL)。从生物学到模型再到预测:使用包含单细胞模型的生物学现实网络模型研究关键杏仁核如何相互作用以获取和消除条件恐惧记忆,进行预测以量化从 LA 到 CeM 的各种预测的相对贡献。以及其他机制从预测到生物学(以及反向):在体外切片中评估恐惧调节和消退对从 LA 到 CeL、CeL 到 CeM 的预测中的突触反应的影响。准备工作(在Par¿合并实验结果并完善模型 2. 使用生物学真实的计算模型研究腹内侧前额叶皮层调节杏仁核依赖性调节和消退恐惧记忆的机制,并测试模型预测。从生物学到模型:使用已发表的生物学数据(体外和体内)来研究前边缘 (PL) 和下边缘 (IL) 中单细胞和网络的神经计算特性。从生物学到模型再到预测:通过开发包括 vmPFC 和杏仁核的整体生物学现实模型,确定 vmPFC 如何调节杏仁核依赖性恐惧和消退记忆(来自具体目标 1)。预测 vmPFC 和杏仁核之间可能调节这些记忆的联系,以及 vmPFC 失活对音调反应的影响。从预测到生物学(以及反向):评估 vmPFC 失活对恐惧调节和消退期间 BA 和 Ce 神经元的音调反应的影响(将在 Quirk 实验室中进行)。所提出的跨学科研究将是第一个开发恐惧回路的生物学真实计算模型的模型,它将有助于发现恐惧回路。哺乳动物条件性恐惧的获得和消除的神经可塑性机制,并将带来有价值的预测和实验研究的新方向,也将有助于更好地理解控制恐惧回路的系统和设计原则。所提出的计算模型将为包括创伤后应激障碍(PTSD)和焦虑症在内的一系列精神疾病提供新的见解和理解,这些疾病被认为是由恐惧回路的缺陷引起的。它也将成为开发新型药物和策略的关键工具。最后,治疗此类疾病。此次合作还将有助于为本科生、研究生、医学生教育以及 K-12 学生开发新课程和材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Satish S Nair其他文献

A Biologically Realistic Network Model of Acquisition and Extinction of Conditioned Fear Associations in Lateral Amygdala Neurons La Pyramidal Cell Model
外侧杏仁核神经元条件性恐惧关联的获得和消除的生物学现实网络模型 La 锥体细胞模型
  • DOI:
    10.1016/j.nlm.2008.05.011
  • 发表时间:
    2008-09-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Guoshi Li;Satish S Nair;Gregory J. Quirk;Li G;Nair Ss;J. Quirk
  • 通讯作者:
    J. Quirk

Satish S Nair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Satish S Nair', 18)}}的其他基金

CRCNS: Optimization of closed-loop control of gamma oscillations
CRCNS:伽马振荡闭环控制的优化
  • 批准号:
    10418751
  • 财政年份:
    2019
  • 资助金额:
    $ 25.17万
  • 项目类别:
CRCNS: Optimization of closed-loop control of gamma oscillations
CRCNS:伽马振荡闭环控制的优化
  • 批准号:
    9914633
  • 财政年份:
    2019
  • 资助金额:
    $ 25.17万
  • 项目类别:
CRCNS: Optimization of closed-loop control of gamma oscillations
CRCNS:伽马振荡闭环控制的优化
  • 批准号:
    10636642
  • 财政年份:
    2019
  • 资助金额:
    $ 25.17万
  • 项目类别:
CRCNS: Optimization of closed-loop control of gamma oscillations
CRCNS:伽马振荡闭环控制的优化
  • 批准号:
    10002297
  • 财政年份:
    2019
  • 资助金额:
    $ 25.17万
  • 项目类别:
CRCNS: Optimization of closed-loop control of gamma oscillations
CRCNS:伽马振荡闭环控制的优化
  • 批准号:
    10207403
  • 财政年份:
    2019
  • 资助金额:
    $ 25.17万
  • 项目类别:
Interdisciplinary Training in Computational Neuroscience for Researchers from Graduate and Medical Students to Junior Faculty
为从研究生、医学生到初级教师的研究人员提供计算神经科学跨学科培训
  • 批准号:
    9303447
  • 财政年份:
    2015
  • 资助金额:
    $ 25.17万
  • 项目类别:
Interdisciplinary Training in Computational Neuroscience for Researchers from Graduate and Medical Students to Junior Faculty
为从研究生、医学生到初级教师的研究人员提供计算神经科学跨学科培训
  • 批准号:
    9037332
  • 财政年份:
    2015
  • 资助金额:
    $ 25.17万
  • 项目类别:
CRCNS: Modeling Acquisition and Extinction of Fear Memories in Amygdala Circuits
CRCNS:模拟杏仁核回路中恐惧记忆的获取和消除
  • 批准号:
    7923205
  • 财政年份:
    2009
  • 资助金额:
    $ 25.17万
  • 项目类别:
CRCNS: Modeling Acquisition and Extinction of Fear Memories in Amygdala Circuits
CRCNS:模拟杏仁核回路中恐惧记忆的获取和消除
  • 批准号:
    8081062
  • 财政年份:
    2009
  • 资助金额:
    $ 25.17万
  • 项目类别:

相似国自然基金

电针抑制AdipoR1蛋白磷酸化调控VTA相关环路功能改善焦虑症恐惧记忆障碍的机制研究
  • 批准号:
    82374254
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
腹侧海马星形胶质细胞参与焦虑症发病的机制研究
  • 批准号:
    82371513
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高尿素通过调控REDD1/mTORC1信号通路促进慢性肾病伴发焦虑症的机制研究
  • 批准号:
    82370739
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
前额叶皮层-丘脑前核环路在焦虑症诱发记忆障碍中的作用机制及电针干预研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
外泌体miR-208-3p靶向MAPK6调控NF-κB通路参与广泛性焦虑症神经微环境炎症的作用及机制研究
  • 批准号:
    82160642
  • 批准年份:
    2021
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Central Amygdala Glutamatergic Circuits in Fear Learning and Extinction
中央杏仁核谷氨酸回路在恐惧学习和消退中的作用
  • 批准号:
    10645220
  • 财政年份:
    2022
  • 资助金额:
    $ 25.17万
  • 项目类别:
Psychosocial risk factors for chronic pain: Characterizing brain and genetic pathways and variation across understudied populations
慢性疼痛的心理社会危险因素:描述大脑和遗传途径以及未充分研究人群的差异
  • 批准号:
    10599396
  • 财政年份:
    2022
  • 资助金额:
    $ 25.17万
  • 项目类别:
Central Amygdala Glutamatergic Circuits in Fear Learning and Extinction
中央杏仁核谷氨酸回路在恐惧学习和消退中的作用
  • 批准号:
    10438780
  • 财政年份:
    2022
  • 资助金额:
    $ 25.17万
  • 项目类别:
Leveraging artificial intelligence to develop novel tools for studying infant brain development
利用人工智能开发研究婴儿大脑发育的新工具
  • 批准号:
    10302034
  • 财政年份:
    2021
  • 资助金额:
    $ 25.17万
  • 项目类别:
Neurobehavioral Mechanisms of Higher-Order and Conceptual Fear and Avoidance Generalization in Anxiety Psychopathology
焦虑精神病理学中高阶和概念恐惧和回避泛化的神经行为机制
  • 批准号:
    10389973
  • 财政年份:
    2021
  • 资助金额:
    $ 25.17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了