Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
基本信息
- 批准号:10265157
- 负责人:
- 金额:$ 39.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-25 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAcute Renal Failure with Renal Papillary NecrosisAdverse eventAlgorithmsAntibioticsArchitectureArea Under CurveArtificial IntelligenceBiometryCalibrationCaringCessation of lifeCodeCollaborationsCollectionComputer softwareComputersConfidence IntervalsCritical IllnessDataData ElementData ProvenanceData SetData SourcesDevelopmentDevicesEffectivenessElectronic Health RecordEnsureEnvironmentEvaluationEventExpenditureFast Healthcare Interoperability ResourcesFrequenciesFundingGeneral HospitalsGoalsHealthHealth ExpendituresHeterogeneityHospital CostsHospital MortalityHospitalizationHospitalsHourIncidenceIndividualInfectionInflammationInstitutionIntensive Care UnitsLearningLength of StayLifeMeasurementMeasuresMedicalMetadataMethodologyMethodsModelingMorbidity - disease rateOrgan failureOutcomePatient-Focused OutcomesPatientsPatternPerformancePharmaceutical PreparationsPilot ProjectsPopulationPredictive AnalyticsPreventionProcessReproducibilityResearchResearch PersonnelRiskRisk AssessmentRisk EstimateSavingsSepsisSeptic ShockSiteSourceStandardizationTestingTimeTrainingUncertaintyVariantWorkacute careaging populationauthoritybasecloud baseddeep learningdemographicsdesignimprovedinterestnovelpatient populationpatient responsepersonalized careportabilityprediction algorithmpredictive modelingpressurepreventprospectiveresearch and developmentresponseseptic patientstheoriestooltreatment optimizationward
项目摘要
Sepsis, Septic Shock, and Acute Kidney Injury (AKI) are among the top causes of hospital mortality,
morbidity, and an increase in duration and cost of hospitalization. Successful prevention and management
of these conditions rely on the ability of clinicians to estimate the risk, and ideally, to anticipate and prevent
these events. Acute care settings and in particular intensive care units (ICUs) provide an environment
where an immense amount of data is acquired, and it is expected that with the advent of wearables and
biometric patches even more data will be available in such settings. But at present, very little of these data
are used effectively to prognosticate, and the existing predictive analytics risk scores suffer from lack of
generalizability across institutions and performance degradation within the same institution over time.
The PIs on this proposal recently demonstrated that a Deep Learning-based algorithm can reliably predict
new sepsis cases in the emergency departments, general hospital wards, and ICUs by as much as 4-6
hours in advance and an area under the curve (ROC) of 0.85-0.90. Furthermore, through a 2-year pilot
study funded via Biomedical Advanced Research and Development Authority (BARDA), we recently joined
forces in a multicenter academic consortium to retrospectively validate this algorithm at each site. Our
collaboration has resulted in a multi-center longitudinal EHR dataset of critically ill patients and has
generated several important questions and findings related to design of portable and generalizable
predictive analytics algorithms that are robust to problems arising from gaps, errors, and biases in
electronic health records (EHRs) due to workflow-related factors (e.g. staffing-level), and heterogeneity of
patient populations and measurement devices.
We propose to continue our prior work by designing new deep learning architectures that are more robust
to data missingness and biases introduced through the variability in process of care, 2) development of
new learning methodologies to improve generalizability of the proposed models under data/population
drifts (aka distributional changes), 3) enhanced metadata design to assist in quantifying ‘conditions for use’
of such algorithms via algorithmic controls, and 4) HL7 and FHIR-based prospective implementation and
testing of these methodologies to provide real-world evidence for the effectiveness of the proposed
approaches. Ultimately, these novel methodologies and tools will enhance our ability to use EHR and other
types of continuously measured longitudinal data to predict adverse events, assess patients’ response to
therapy, and optimize and personalize care at the beside.
败血症,败血性休克和急性肾脏损伤(AKI)是医院死亡率的主要原因之一,
发病率,以及住院持续时间和成本的增加。成功预防和管理
在这些情况下
这些事件。急性护理环境,尤其是重症监护病房(ICU)提供了一个环境
在获取大量数据的地方,可以预期随着可穿戴设备的冒险
生物识别补丁甚至可以在此类设置中获得更多数据。但是目前,这些数据很少
有效地用于证明烯酸盐,现有的预测分析风险评分缺乏
随着时间的流逝,机构之间的概括性和绩效下降。
该提案的PI最近表明,基于深度学习的算法可以可靠地预测
急诊科,综合医院病房和ICU的新败血症病例高达4-6
提前几小时,曲线(ROC)下的面积为0.85-0.90。此外,通过2年的飞行员
通过生物医学高级研发局(Barda)资助的研究,我们最近加入了
多中心学术联盟中的力量回顾性地验证了每个地点的该算法。我们的
协作导致了一个多中心的纵向EHR数据集的重症患者,并且有
产生了几个重要的问题和发现,与便携式和可推广的设计有关
预测分析算法对因差距,错误和偏见引起的问题而强大的算法
由于与工作流有关的因素(例如人员配置级)和异质性,电子健康记录(EHRS)
患者人群和测量设备。
我们建议通过设计新的深度学习体系结构来继续我们的先前工作
通过护理过程的变异性引入的数据丢失和偏见,2)
在数据/人群下提高拟议模型的普遍性的新学习方法
戏剧(又称分布变化),3)增强的元数据设计以帮助量化“使用条件”
通过算法控制和4)HL7和基于FHIR的前瞻性实施和
测试这些方法以提供现实世界的证据证明所提出的有效性
方法。最终,这些新颖的方法和工具将增强我们使用EHR和其他其他的能力
连续测量的纵向数据的类型以预测不良事件,评估患者对
治疗,并在旁边进行优化和个性化护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAMIM NEMATI其他文献
SHAMIM NEMATI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAMIM NEMATI', 18)}}的其他基金
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
- 批准号:
10610420 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
- 批准号:
10420954 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10277331 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10439876 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10626899 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10827775 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
Deep Learning and Streaming Analytics for Prediction of Adverse Events in the ICU
用于预测 ICU 不良事件的深度学习和流分析
- 批准号:
9983413 - 财政年份:2019
- 资助金额:
$ 39.4万 - 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
- 批准号:
10616765 - 财政年份:2012
- 资助金额:
$ 39.4万 - 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
- 批准号:
10406030 - 财政年份:2012
- 资助金额:
$ 39.4万 - 项目类别:
相似海外基金
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
- 批准号:
10610420 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
- 批准号:
10420954 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Hyperhydration to Improve Kidney Outcomes in Children with Shiga Toxin-Producing E. Coli Infection (HIKO STEC): A Multinational, Embedded, Cluster, Crossover, Randomized Trial
过度水化可改善产志贺毒素大肠杆菌感染儿童的肾脏预后 (HIKO STEC):一项跨国、嵌入式、集群、交叉、随机试验
- 批准号:
10490868 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
Hyperhydration to Improve Kidney Outcomes in Children with Shiga Toxin-Producing E. Coli Infection (HIKO STEC): A Multinational, Embedded, Cluster, Crossover, Randomized Trial
过度水化可改善产志贺毒素大肠杆菌感染儿童的肾脏预后 (HIKO STEC):一项跨国、嵌入式、集群、交叉、随机试验
- 批准号:
10328703 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
PRagMatic Pediatric Trial of Balanced versus NOrmaL Saline FlUid in Sepsis (PRoMPT BOLUS)
平衡与普通生理盐水治疗脓毒症的实用儿科试验(快速推注)
- 批准号:
10677870 - 财政年份:2020
- 资助金额:
$ 39.4万 - 项目类别: