Vascular Dysfunction and Inflammation

血管功能障碍和炎症

基本信息

  • 批准号:
    10262624
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Nitric oxide: Our work has focused on cGMP-independent, non-canonical NO signaling and inflammatory gene regulation. NO up-regulated TNFa production (J Immunol 1994; Blood 1997) through a cGMP-independent signaling pathway (J Biol Chem 1997) that utilized NO-responsive Sp1 promoter binding sites (J Biol Chem 1999; J Biol Chem 2003). Dysfunctional eNOS upregulated TNFa (J Biol Chem 2000) through ROS and ERK1/2 (Am J Physiol 2001). NO activation of p38 MAPK stabilized IL-8 mRNA (J Infect Dis 1998; J Leuk Biol 2004). NO has diverse effects on transcript stability and translation (Nucleic Acids Research 2006; J Leuk Biol 2008). Sickle cell disease caused oxidant and inflammatory stress in the vasculature (Blood, 2004). This circulatory stress altered gene expression and arginine metabolism (Circulation, 2007). Anti-proliferative effects of NO were linked to p38 MAPK activation and p21 mRNA stabilization (BMC Genomics 2005; J Biol Chem 2006). Both NO and peroxisome proliferator-activated receptors (PPARs) protect the endothelium and regulate its function. PPARg was activated by NO through a p38 MAPK signaling pathway (FASEB J 2007). In contrast to the pro-inflammatory effects of high output NO, CO blocked proximal events in NF-kB signal transduction and broadly suppressed inflammation (PLoS One 2009). Nuclear receptors (NRs): The glucocorticoid receptor (GR) suppresses inflammatory responses by tethering to DNA-bound NF-kB and AP-1 complexes that broadly control the expression of cytokines, chemokines and adhesion molecules. Effects on inflammation of other NRs including PPARg, MR, AR, and COUP-TF are being investigated in human endothelial cells (ECs). Rosiglitazone (RGZ) is a PPARg ligand/agonist used to treat type 2 diabetes. G-protein coupled receptor 40 (GPR40)/p38 MAPK/PGC1a/EP300 activation by RGZ was shown in human ECs to augment RGZ/PPARg genomic signaling (J Biol Chem 2015). Cognate GPR and nuclear receptor signaling networks may explain differences in the safety and efficacy of nuclear receptor targeted drugs (Pharm Research 2016). MR agonists repressed NF-kB mediated gene transcription, but trans-activated inflammatory AP-1 signaling in a DNA sequence, MR conformation, and AP-1 family member dependent fashion (J Biol Chem 2016). Aldosterone/MR activation of AP-1 may contribute to harmful inflammatory effects in CHF and PAH. Long-chain monounsaturated fatty acids (LCMUFA; i.e., C20:1 and C22:1) benefits were associated with PPAR activation, possibly via the activation of GPR40, and favorable alterations in lipoproteins (Atheroscelerosis 2017). SPL, but not eplerenone was found to suppress both NF-kB and AP-1 inflammatory signaling independent of MR through the proteasomal degradation of XPB, a core subunit of the eukaryotic basal transcription TFIIH complex (Cardiovasc Res 2018). Loss of COUPTF2 (NR2F2) de-repressed JAK/STAT/interferon inflammatory responses in endothelial cells (ATS 2011; Aspen Lung Conference 2019; manuscript in preparation 2020-21). Selective AR modulators (SARMs) have been investigated to identify AR ligands with reduced pro-inflammatory potential and possibly net anti-inflammatory effects in the human vasculature. Pulmonary arterial hypertension (PAH): Two PAH clinical protocols, including a pilot study of spironolactone therapy (Trials 2013) and a natural history study investigating circulating markers of vascular inflammation and high-resolution cardiac magnetic resonance imaging (MRI), provide a source of patient specimens to support ongoing laboratory studies. Circulating ECs were identified by flow cytometry and their endothelial phenotype was validated using ultramicro analytical immunochemistry (Thrombosis and Haemostasis 2014). ECs with heterogeneous PAH-associated molecular defects including BMPR2, CAV1 and SMAD9, PHD2 (prolyl hydroxylase domain protein 2; EGLN1), COUPTF2 (NR2F2), and G6PC3 (glucose-6-phosphatase catalytic subunit 3) are being studied in vitro to create a comprehensive picture of pathogenic mechanisms and therapeutic targets. Loss-of-function mutations in bone morphogenetic protein type II receptor (BMPR2) are the most common genetic cause of PAH. BMPR2 knockdown (KD) in human pulmonary artery ECs (PAECs) activated Ras/Raf/ERK signaling, an oncogenic pathway, leading to proliferation, invasiveness and cytoskeletal abnormalities (Am J Physiol Lung Cell Mol Physiol 2016). A meta-analysis of peripheral blood mononuclear cell (PBMC) expression profiling studies in PAH patients from multiple centers and across various expression profiling platforms identified an interferon-driven systemic immunologic response as a fundamental component of PAH pathobiology that was previously unrecognized in the individual blood expression profiling studies (Am J Physiol Lung Cell Mol Physiol 2020). Caveolin-1 (CAV1) loss-of-function (LOF), similar to BMPR2, produced a proliferative, hyper-migratory and inflammatory PAEC phenotype (Grover Conference 2015; ATS 2017) with activation of JAK/STAT/interferon signaling and AKT. This inflammatory signature was also found in fibroblasts from PAH patients with CAV1 mutations and in CAV1-/- mice (Aspen Lung Conference 2019; ATS 2017; manuscript submitted 2020). A sugen (SU5416) hypoxia rat model of pulmonary arterial hypertension has been established and an initial study of spironolactone and eplerenone compared to placebo has been completed (AHA Meeting 2019; manuscript in preparation). SMAD9 LOF in human PAECs also produced an abnormal cellular phenotype characterized by proliferation, hypermigration, cytoskeletal and mitochondrial alterations and endothelial to mesenchymal transition, as well as non-canonical activation of AKT, ERK and p38 (ATS 2018; manuscript in preparation). Loss-of-function mutations in COUPTF2 (NR2F2) have been associated with congenital heart disease (CHD), which can result in PAH. COUPTF2 silencing in ECs produced an interferon inflammatory response and exhibited a hyper-proliferative, apoptosis-resistant, and invasive phenotype with AKT activation. Dickkopf-1 (DKK1), an upstream regulator of AKT and DKK1 knockdown abrogated the abnormal signaling associated with COUPTF2 loss (Aspen Lung Conference 2019: manuscript in preparation). An in vitro pseudohypoxia model of PAH was established by silencing PHD2 (prolyl hydroxylase domain protein 2; EGLN1) in LMVECs. PHD2-silencing stabilized HIF2alpha, decreased ASK-interacting protein 1 (AIP; DAB2IP), activating AKT and ERK (Aspen Lung Conference 2019; manuscript in preparation). Marked resistance to apoptosis has been a consistent feature of our endothelial cell models of PAH. Using the BMPR2 loss-of-function model as a prototype, apoptosis resistance was linked to vasohibin 1 (VASH1) and DLL4 loss, PI3K/AKT and ERK activation, and JNK suppression, (manuscript in preparation). Inhibiting PI3K/AKT restored apoptosis sensitivity in the three model systems tested to date, BMPR2, CAV1 and PHD2.
一氧化氮:我们的工作集中于CGMP独立的,非典型的NO信号传导和炎症基因调节。没有通过CGMP独立的信号传导途径(J Immunol 1994; Blood 1997)上调的TNFA产生(J Biol Chem 1997),该信号通路(J Biol Chem 1997)利用无反应性SP1启动子结合位点(J Biol Chem 1999; J Biol Chem 2003)。通过ROS和ERK1/2(AM J Physiol 2001)上调TNFA(J Biol Chem 2000)的功能失调(J Biol Chem 2000)。没有激活p38 MAPK稳定IL-8 mRNA(J Infect Dis 1998; J Leuk Biol 2004)。 NO对转录本的稳定性和翻译具有多种影响(核酸研究2006; J Leuk Biol 2008)。 镰状细胞疾病在脉管系统中引起氧化剂和炎症应激(血液,2004年)。这种循环应激改变了基因表达和精氨酸代谢(Circulation,2007)。 NO的抗增殖作用与p38 MAPK激活和p21 mRNA稳定有关(BMC Genomics 2005; J Biol Chem 2006)。 NO和过氧化物酶体增殖物激活的受体(PPAR)都保护内皮并调节其功能。 NO通过p38 MAPK信号通路激活了PPARG(Faseb J 2007)。与高输出NO的促炎作用相反,CO阻断了NF-KB信号转导和广泛抑制的炎症(PLOS One 2009)。 核受体(NRS):糖皮质激素受体(GR)通过将DNA结合的NF-KB和AP-1复合物束缚在抑制炎症反应,从而广泛控制细胞因子,趋化因子和粘附分子的表达。在人内皮细胞(EC)中研究了包括PPARG,MR,AR和COUP-TF在内的其他NR炎症的影响。 Rosiglitazone(RGZ)是用于治疗2型糖尿病的PPARG配体/激动剂。 G蛋白偶联受体40(GPR40)/p38 MAPK/PGC1A/EP300通过RGZ在人EC中显示以增强RGZ/PPARG基因组信号传导(J Biol Chem 2015)。同源GPR和核受体信号网络可能解释了核受体靶向药物的安全性和功效的差异(Pharm Research 2016)。 Agonists Mr抑制了NF-KB介导的基因转录,但以DNA序列,MR构象和AP-1家族成员依赖性时尚的反式激活AP-1信号传导(J Biol Chem 2016)。 AP-1的醛固酮/MR激活可能导致CHF和PAH的有害炎症作用。 长链单不饱和脂肪酸(LCMUFA;即C20:1和C22:1)益处与PPAR激活相关,可能是通过GPR40的激活和脂蛋白的良好改变(Antherosceloscelerosis,2017年)。 发现SPL,但不能通过XPB的蛋白酶体降解(真核基础转录TFIIH Complex的核心亚基)抑制与MR的NF-KB和AP-1炎症信号传导(Cardiovasc Res 2018)。 内皮细胞中couptf2(NR2F2)的损失(NR2F2)去除抑制了JAK/STAT/干扰素炎症反应(ATS 2011; Aspen Lung Conference 2019;在2020-21制备中的手稿)。 已经研究了选择性AR调节剂(SARMS),以鉴定人类脉管系统中促炎潜力和可能净抗炎作用的AR配体。 肺动脉高压(PAH):两种PAH临床方案,包括螺内酯治疗的初步研究(试验2013年)和一项自然历史研究,研究了血管炎症的循环标志和高分辨率心脏磁共振成像(MRI)的循环标志物(MRI),提供了支持正在进行的实验室研究的患者标本的来源。 通过流式细胞仪鉴定循环EC,使用超大型分析免疫化学验证其内皮表型(血栓形成和止血2014)。 具有异质性PAH相关的分子缺损的EC,包括BMPR2,CAV1和SMAD9,PHD2(Prolyl羟基酶结构蛋白蛋白2; EGLN1),COUPTF2(NR2F2)(NR2F2)和G6PC3和G6PC3(Glucose-6-磷酸盐酶催化的图片),并构成了进程的机制,并研究了动态机制,并研究了研究中的机制。治疗靶标。 骨形态发生蛋白II型受体(BMPR2)的功能丧失突变是PAH的最常见遗传原因。人类肺动脉ECS(PAECS)中的BMPR2敲低(KD)激活了RAS/RAF/ERK信号传导,这是一种致癌途径,导致增殖,侵袭性和细胞骨骼异常(AM J Physiol ung ung unglung Lung Lung Lung Lung Lung Cell Moliol 2016)。 A meta-analysis of peripheral blood mononuclear cell (PBMC) expression profiling studies in PAH patients from multiple centers and across various expression profiling platforms identified an interferon-driven systemic immunologic response as a fundamental component of PAH pathobiology that was previously unrecognized in the individual blood expression profiling studies (Am J Physiol Lung Cell Mol Physiol 2020). Caveolin-1(CAV1)功能丧失(LOF)类似于BMPR2,产生了激活JAK/STAT/Interferon信号和AKT的增殖,过度迁移和炎症PAEC表型(Grover Conference 2015; ATS 2017)。在PAH患者和CAV1 - / - 小鼠的PAH患者的成纤维细胞中也发现了这种炎症性特征(2019年ASPEN肺会议; ATS 2017;手稿提交了2020年)。 已经建立了肺动脉高压的SUGEN(SU5416)低氧大鼠模型,与安慰剂相比,螺内酯和eplerenone的初步研究已经完成(AHA Meeting 2019;制备中的手稿)。 人类PAEC中的Smad9 LOF还产生了异常的细胞表型,其特征是增生,过度迁移,细胞骨架和线粒体改变以及对间充质过渡的内皮,以及Akt,Erk和P38的非循环激活(ATS 2018; Manuscript in Prepariation in Prepariation in Prespration in Presscript)。 Couptf2(NR2F2)的功能丧失突变与先天性心脏病(CHD)有关,这可能导致PAH。 ECS中的couptf2沉默产生了干扰素炎症反应,并表现出具有AKT激活的高增殖性,抗凋亡耐药性和侵入性表型。 AKT和DKK1敲低的上游调节器Dickkopf-1(DKK1)废除了与couptf2损失相关的异常信号传导(2019年Aspen Lung Conference 2019:准备中的手稿)。 通过在LMVEC中进行沉默的PHD2(脯氨酰羟化酶结构蛋白2; EGLN1)建立了PAH的体外假氧模型。 phd2-silesing稳定的hif2alpha降低了询问相互作用的蛋白1(AIP; dab2ip),激活Akt和ERK(2019年Aspen Lung Conference 2019;制备中的手稿)。 对凋亡的明显耐药性一直是我们PAH内皮细胞模型的一致特征。使用BMPR2功能丧失模型作为原型,凋亡耐药性与血管肽1(VASH1)和DLL4损失,PI3K/AKT和ERK激活以及JNK抑制有关(制备中的手稿)。抑制PI3K/AKT恢复了迄今为止测试的三个模型系统BMPR2,CAV1和PHD2。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROBERT L DANNER其他文献

ROBERT L DANNER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROBERT L DANNER', 18)}}的其他基金

Functional Genomics Of Critical Illness
危重疾病的功能基因组学
  • 批准号:
    6825020
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Functional Genomics Of Critical Illness
危重疾病的功能基因组学
  • 批准号:
    7212416
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Preclinical and Clinical Investigations in Septic Shock
感染性休克的临床前和临床研究
  • 批准号:
    7215797
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Nitric Oxide Regulation of Inflammatory Responses and Gene Expression
一氧化氮调节炎症反应和基因表达
  • 批准号:
    8952789
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Endothelial Dysfunction and Vascular Inflammation
内皮功能障碍和血管炎症
  • 批准号:
    8565269
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Functional Genomics of Inflammation and Critical Illness
炎症和危重疾病的功能基因组学
  • 批准号:
    9549437
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Preclinical and Clinical Investigations of Severe Infection and Critical Illness
严重感染和危重疾病的临床前和临床研究
  • 批准号:
    10923694
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Preclinical and Clinical Investigations in Septic Shock
感染性休克的临床前和临床研究
  • 批准号:
    7733589
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Functional Genomics Of Critical Illness
危重疾病的功能基因组学
  • 批准号:
    6993908
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Preclinical and Clinical Investigations in Septic Shock
感染性休克的临床前和临床研究
  • 批准号:
    6825426
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

β2AR激动剂与微秒电刺激对大鼠肛提肌线粒体有氧代谢酶及其多模态影像表型的影响研究
  • 批准号:
    82101697
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
β2AR激动剂与微秒电刺激对大鼠肛提肌线粒体有氧代谢酶及其多模态影像表型的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环境激素壬基酚对变应性鼻炎的影响及其对GPER特异性激动剂G-1在变应性鼻炎治疗作用中的干扰机制研究
  • 批准号:
    82000963
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
促生长激素释放激素激动剂抑制平滑肌细胞转分化对动脉粥样硬化的影响及机制研究
  • 批准号:
    81900389
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
五羟色胺2C受体激动剂对2型糖尿病小鼠β细胞功能的影响及机制研究
  • 批准号:
    81803644
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Prevention of intracellular infection in diabetic wounds by commensal Staphylococcus epidermidis
共生表皮葡萄球菌预防糖尿病伤口细胞内感染
  • 批准号:
    10679628
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
  • 批准号:
    10844877
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Integrating Tailored Postoperative Opioid Tapering and Pain Management Support for Patients on Long-Term Opioid Use Presenting for Spine Surgery (MIRHIQL)
为脊柱手术中长期使用阿片类药物的患者整合定制的术后阿片类药物逐渐减量和疼痛管理支持 (MIRHIQL)
  • 批准号:
    10722943
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
  • 批准号:
    10726834
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Alcohol-induced epigenetic reprogramming of PPAR-α affects allopregnanolone biosynthesis
酒精诱导的 PPAR-α 表观遗传重编程影响异孕酮生物合成
  • 批准号:
    10658534
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了