Translational and Computational Analysis of Dialysis Fistula Maturation Failure-2
透析瘘成熟失败的转化和计算分析-2
基本信息
- 批准号:10256010
- 负责人:
- 金额:$ 57.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-18 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Anastomosis - actionAnatomyAngioplastyAnimal ModelArchitectureArteriovenous fistulaBiologicalBiological Response Modifier TherapyBiologyBiomechanicsBlood CirculationBlood VesselsBypassCardiovascular systemCell Cycle KineticsCell ProliferationCellular biologyCentral VeinClinicalComplexComputer AnalysisComputer ModelsCoronaryCoupledDataDepositionDialysis procedureElementsEndotheliumEnvironmentEquilibriumFailureFistulaGene ExpressionGeneral PopulationGenesGenomicsGoalsGrowthHemodialysisHumanHyperplasiaInflammatoryInterventionInvestigationLinkMaintenanceMediator of activation proteinModelingNatural experimentOutcomePathologicPathologyPathway AnalysisPathway interactionsPatternPharmacologyPhasePhenotypePhysiologicalPhysiologyRegulator GenesResearchSamplingSmooth Muscle MyocytesStentsSystemTherapeuticThinnessVeinsarterial remodelingbasedesignexperimental studygenome-widegenomic signaturehemodynamicsimprovedin silicoinsightintima medialaser capture microdissectionmechanotransductionmetabolomicsmigrationmortalitymulti-scale modelingnext generationresponseresponse to injuryrestraintshear stresstrend
项目摘要
ABSTRACT
Many of the insights into pathologic versus adaptive arterial remodeling have been achieved through a detailed
understanding of the linkage between endothelial/smooth muscle cell biology and the local hemodynamic forces
that modulate their response pattern. In the normal arterial circulation, where moderate shear stress, laminar
flow patterns predominate, the response patterns following intervention have been well delineated and are the
cornerstone for successful therapies. In contrast, the complex, high-energy, chaotic flow environment, which
characterizes the AVF, breaks these established hemodynamic-biologic relationships. Aim 1 will explore the
mechanosensing mechanisms that are instrumental in the interpretation of these forces and examine their
downstream effect on shifting the smooth muscle cell (SMC) to a pro-proliferative, synthetic phenotype. In a
more global sense, understanding the unique response patterns within the AVF flow environment are
instrumental to moving the field forward and providing the needed insights to design the next generation of
biologic therapies to improve AVF outcomes. Aims 2 and 3 will perform a systems-based analysis of the critical
genomic changes that dictate successful versus failed AVF remodeling and utilize a multi-scale model to identify
those key elements within the network that should move forward for further translational investigation.
Supported by our preliminary data, we propose that the intima and media have unique response patterns
following AVF creation. Using laser capture microdissection, high-throughput genomics and advanced network
analysis, the current project will produce a multi-scale, computational model links changes in gene expression
network to alterations in SMC and matrix biology and ultimately alterations in the remodeling response of the
AVF architecture. Using this model, a systematic analysis of the biologic response to genomic perturbations can
be explored, effectively performing a progression of in silico experiments to identify those key opportunities in
the genomic response where the needed balance between expansive remodeling and modulated hyperplastic
growth can be achieved. Within this context, the following Aims are proposed:
SPECIFIC AIM 1: Explore the biomechanical linkage between AVF creation and SMC phenotype and evaluate
the impact of these changes on AVF adaptation and successful (or failed) physiological maturation.
SPECIFIC AIM 2: Delineate the changes in genome-wide expression patterns associated with AVF creation and
identify unique genomic signatures that are associated with successful AVF remodeling.
SPECIFIC AIM 3: Create and explore a dynamic gene regulatory network, which in combination with a multiscale
computational model of vascular adaptation, identifies the subset of genes that have the most significant
influence on augmenting outward remodeling and reducing intimal hyperplasia following AVF placement.
抽象的
通过详细的了解,对病理和自适应动脉重塑的许多见解已实现
了解内皮/平滑肌细胞生物学与局部血流动力学之间的联系
这调节了他们的响应模式。在正常的动脉循环中,中等剪切应力,层层
流动模式占主导地位,干预后的响应模式已被很好地描述,并且是
成功疗法的基石。相反,复杂的,高能的混乱流动环境,该环境
表征AVF,打破了这些已建立的血液动力学生物学关系。 AIM 1将探索
在解释这些力并检查它们的机械传感机制
下游对将平滑肌细胞(SMC)转移到促增强的合成表型的效果。在
更全球的意义,了解AVF流动环境中独特的响应模式是
有助于向前推进领域并提供所需的见解,以设计下一代
生物疗法改善AVF结果。目标2和3将对关键的基于系统的分析
基因组变化决定了成功与失败的AVF重塑,并利用多尺度模型来识别
网络中的那些关键要素应该向前迈进,以进行进一步的翻译调查。
在我们的初步数据的支持下,我们建议内部媒体和媒体具有独特的响应模式
遵循AVF创建。使用激光捕获显微解剖,高通量基因组学和高级网络
分析,当前的项目将产生多尺度的计算模型链接基因表达的变化
网络与SMC和基质生物学的改变,并最终改变了重塑响应的变化
AVF架构。使用此模型,对基因组扰动的生物反应的系统分析可以
探索,有效地执行硅实验中的进展,以确定这些关键机会
基因组反应,其中所需的膨胀重塑与调制增生之间的平衡
可以实现增长。在这种情况下,提出了以下目标:
特定目标1:探索AVF创建与SMC表型之间的生物力学联系并评估
这些变化对AVF适应和成功(或失败)生理成熟的影响。
特定目标2:描述与AVF创建相关的全基因组表达模式的变化
确定与成功的AVF重塑相关的独特基因组特征。
特定目标3:创建和探索动态基因调节网络,该网络与多尺度结合
血管适应的计算模型,识别具有最重要的基因的子集
AVF放置后,对增强向外重塑并减少内膜增生的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott A Berceli其他文献
Arteriovenous Fistula Histology, Hemodynamics, and Wall Mechanics: A Case Report of Successful and Failed Access in a Single Patient
动静脉瘘组织学、血流动力学和管壁力学:单个患者成功和失败通路的病例报告
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
Hannah Northrup;Yong He;Scott A Berceli;Alfred K. Cheung;Y. Shiu - 通讯作者:
Y. Shiu
Scott A Berceli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott A Berceli', 18)}}的其他基金
Interdisciplinary Training for Vascular Surgeon Scientists
血管外科医生科学家的跨学科培训
- 批准号:
10332359 - 财政年份:2022
- 资助金额:
$ 57.53万 - 项目类别:
Interdisciplinary Training for Vascular Surgeon Scientists
血管外科医生科学家的跨学科培训
- 批准号:
10534774 - 财政年份:2022
- 资助金额:
$ 57.53万 - 项目类别:
Translational and Computational Analysis of Dialysis Fistula Maturation Failure-2
透析瘘成熟失败的转化和计算分析-2
- 批准号:
10020387 - 财政年份:2019
- 资助金额:
$ 57.53万 - 项目类别:
Constitutive and Agent-Based Multiscale Models to Improve Vein Graft Survival
提高静脉移植物存活率的本构和基于代理的多尺度模型
- 批准号:
8554620 - 财政年份:2013
- 资助金额:
$ 57.53万 - 项目类别:
Constitutive and Agent-Based Multiscale Models to Improve Vein Graft Survival
提高静脉移植物存活率的本构和基于代理的多尺度模型
- 批准号:
8883698 - 财政年份:2013
- 资助金额:
$ 57.53万 - 项目类别:
Constitutive and Agent-Based Multiscale Models to Improve Vein Graft Survival
提高静脉移植物存活率的本构和基于代理的多尺度模型
- 批准号:
8717717 - 财政年份:2013
- 资助金额:
$ 57.53万 - 项目类别:
Hemodynamics and Vascular Wall Biology Determine Arteriovenous Fistula Maturation
血流动力学和血管壁生物学决定动静脉瘘的成熟
- 批准号:
8464076 - 财政年份:2011
- 资助金额:
$ 57.53万 - 项目类别:
Hemodynamics and Vascular Wall Biology Determine Arteriovenous Fistula Maturation
血流动力学和血管壁生物学决定动静脉瘘的成熟
- 批准号:
8106051 - 财政年份:2011
- 资助金额:
$ 57.53万 - 项目类别:
Hemodynamics and Vascular Wall Biology Determine Arteriovenous Fistula Maturation
血流动力学和血管壁生物学决定动静脉瘘的成熟
- 批准号:
8278543 - 财政年份:2011
- 资助金额:
$ 57.53万 - 项目类别:
Hemodynamics and Vascular Wall Biology Determine Arteriovenous Fistula Maturation
血流动力学和血管壁生物学决定动静脉瘘的成熟
- 批准号:
8691797 - 财政年份:2011
- 资助金额:
$ 57.53万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Biodegradability and Biocompatibility of a Shape Memory Polymer Wrap to Improve Saphenous Vein Graft Patency in Peripheral and Coronary Artery Bypass Grafting Surgeries
形状记忆聚合物包裹物的生物降解性和生物相容性可改善周围动脉和冠状动脉搭桥手术中隐静脉移植物的通畅性
- 批准号:
9909182 - 财政年份:2020
- 资助金额:
$ 57.53万 - 项目类别:
Translational and Computational Analysis of Dialysis Fistula Maturation Failure-2
透析瘘成熟失败的转化和计算分析-2
- 批准号:
10020387 - 财政年份:2019
- 资助金额:
$ 57.53万 - 项目类别:
Point of Care Elastographic Sonoangiography (eSA)
护理点弹性超声血管造影 (eSA)
- 批准号:
9768247 - 财政年份:2017
- 资助金额:
$ 57.53万 - 项目类别:
Point of Care Elastographic Sonoangiography (eSA)
护理点弹性超声血管造影 (eSA)
- 批准号:
9393446 - 财政年份:2017
- 资助金额:
$ 57.53万 - 项目类别:
COMPUTATIONAL FLUID DYNAMICS FOR THE HEMODYNAMIC INVESTIGATION OF PEDIATRIC CAR
用于儿科车血流动力学研究的计算流体动力学
- 批准号:
7956185 - 财政年份:2009
- 资助金额:
$ 57.53万 - 项目类别: