Viral-based Therapeutic Approaches for Reversal of ALS Pathology
逆转 ALS 病理的病毒治疗方法
基本信息
- 批准号:10255529
- 负责人:
- 金额:$ 19.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ALS pathologyAddressAdultAdvisory CommitteesAffectAmyotrophic Lateral SclerosisAntisense OligonucleotidesAreaArsenitesBackBehavioralBrainBrain StemC9ORF72Cell LineCell NucleusCell SurvivalCellsCervicalCessation of lifeClinicalClinical TrialsCytopathologyDNA-Binding ProteinsDataDipeptidesDiseaseEnsureExhibitsFluoroscopyFundingGaitGenetic ModelsGenetic TranscriptionGoalsGrantHistopathologyHumanIn VitroInvestigationKaryopherinsKnowledgeLongevityLumbar spinal cord structureMeasuresMediatingMentorsMentorshipMissionModelingMolecular BiologyMotor CortexMotor Neuron DiseaseMotor NeuronsNational Institute of Neurological Disorders and StrokeNeonatalNervous system structureNeurodegenerative DisordersNeurologistNeurologyNeuronsNeurosciencesNuclearNuclear ImportNuclear ProteinPathologicPatientsPennsylvaniaPhysiciansProteinsRNA InterferenceRNA SplicingReporterRepressionResourcesSCA2 proteinScientistSpinal CordStressTarsTestingTherapeuticToxic effectTrainingTranslationsUniversitiesViralViral VectorWorkadeno-associated viral vectorbasebiological adaptation to stressburden of illnesscareerexperiencegene therapyhigh riskimprovedin vivoknock-downloss of functionmotor function improvementmouse modelneuron lossneuroprotectionneurotropicnovelnovel therapeuticsnucleocytoplasmic transportoverexpressionpreferencepreventskillssporadic amyotrophic lateral sclerosisstress granulesuccesssynergismtranslation factorvector
项目摘要
PROJECT SUMMARY/ABSTRACT
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by death of motor neurons. A key pathologic
feature is the cytoplasmic mislocalization of a nuclear transcription and splice regulator, Tar-DNA binding protein
of 43kDa (TDP-43). TDP-43 is aggregated in cytoplasmic stress granules (SGs) along with nuclear import/export
factors, and its toxicity is thought to be due to both cytoplasmic gain- and nuclear loss-of-function mechanisms.
Relocating it to the nucleus has the potential to address both forms of toxicity. Inhibiting formation of SGs is one
promising strategy, and downregulating the SG-associated protein Ataxin-2 (Atxn2) using antisense
oligonucleotides (ASOs) prolongs strength and survival in a mouse model of ALS. However, ASOs require
frequent CNS readministration, and a preferable approach would be to achieve knockdown after one treatment.
A second approach is enhancing nuclear import, a strategy with success in dipeptide repeat (DPR) toxicity
models of ALS in vitro. Extending this strategy to non-DPR forms of ALS has the potential to make a broad
impact on the disease. In addition, potential synergy between the two approaches has great therapeutic potential.
If successful, these strategies could be used to treat the vast majority of ALS.
In preliminary work, RNAi delivered using a novel viral vector achieves robust knockdown of Atxn2 in the key
areas of the nervous system affected in ALS. Aim 1 of this proposal is to determine if sustained Atxn2 knockdown
in these regions reverses TDP-43 mislocalization and improves neuron survival in two distinct mouse models of
ALS. In other preliminary work, cell lines overexpressing a nuclear import factor show reductions in TDP-43. Aim
2 is to test if augmenting nuclear import corrects TDP-43 localization and improves cell survival under conditions
of stress. My central hypothesis is that targeting both cytoplasmic aggregation and nuclear loss of TDP-43 using
viral-mediated approaches will result in sustained neuroprotection. This work fits squarely in NINDS’ mission to
further our knowledge about the brain and nervous system and to use this knowledge to reduce the burden of
disease, specifically targeting one of neurology’s most devastating afflictions.
Dr. Amado is a passionate, highly-trained clinician-scientist uniquely poised to make a fundamental impact
on ALS. Her mentor Dr. Beverly Davidson, a renowned neurodegenerative disease expert continually pushing
the boundaries of vector-based therapeutics, and her advisory committee of deeply experienced and dedicated
neurologists and neuroscientists, will provide the guidance and mentorship to ensure her success, backed by
enthusiastic institutional support. The University of Pennsylvania, with its innumerable resources and facilities,
is an outstanding place to launch a neuroscience career. Dr. Amado will use this 5-year mentored opportunity to
build on her gene therapy training and merge it with her clinical expertise to become an independent, R01-funded
physician-scientist developing novel therapies for patients with ALS.
项目摘要/摘要
肌萎缩性侧索硬化症(ALS)是一种致命疾病,其特征是运动神经元死亡。关键病理
特征是核转录和剪接调节剂TAR-DNA结合蛋白的细胞质错误定位
43KDA(TDP-43)。 TDP-43在细胞质应激颗粒(SG)中汇总以及核进出口
因素及其毒性被认为是由于细胞质增益和核功能丧失机制引起的。
将其重新定位到细胞核具有解决两种形式的毒性的潜力。抑制SG的形成是一个
有前途的策略,并下调使用反义的SG相关蛋白Ataxin-2(ATXN2)
寡核苷酸(ASOS)在ALS小鼠模型中延长了强度和存活。但是,ASOS需要
CNS经常进行读取,最好的方法是在一次治疗后实现敲低。
第二种方法是增强核进口,这是一种在二肽重复(DPR)毒性方面取得成功的策略
体外ALS模型。将此策略扩展到非DPR形式的ALS有可能使广泛
此外,两种方法之间的潜在协同作用具有巨大的治疗潜力。
如果成功,这些策略可用于治疗绝大多数ALS。
在初步工作中,RNAi使用新型病毒矢量交付的RNAi可以在钥匙中实现ATXN2的强大敲低
神经系统的区域在ALS中受到影响。该提案的目标1是确定是否持续
在这些区域中,在两个不同的小鼠模型中,TDP-43错误定位并改善了神经元的存活率
ALS。在其他初步工作中,过表达核进口因子的细胞系显示TDP-43中的降低。目的
2是测试是否增加核进口是否纠正TDP-43定位并改善条件下的细胞存活率
压力。我的中心假设是,使用TDP-43的细胞质聚集和核损失靶向
病毒介导的方法将导致持续的神经保护。这项工作完全适合Ninds的使命
进一步我们对大脑和神经系统的了解,并利用这些知识来减少燃烧
疾病,特别针对神经病学最具破坏性的感情之一。
Amado博士是一位热情,训练有素的临床科学家独特中毒,产生根本影响
在ALS上。她的心理贝弗利·戴维森(Beverly Davidson)博士,著名的神经退行性疾病专家不断推动
基于向量的理论的界限及其咨询委员会的经验丰富和敬业的咨询委员会
神经科医生和神经科学家将提供指导和心态,以确保她的成功,并在
热情的机构支持。宾夕法尼亚大学拥有无数的资源和设施,
是开展神经科学事业的出色场所。 Amado博士将利用这个为期5年的机会
建立在她的基因疗法培训的基础上,并将其与她的临床专业知识合并为独立的R01资助
医师科学家为ALS患者开发新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Defne Audrey Amado其他文献
Defne Audrey Amado的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Defne Audrey Amado', 18)}}的其他基金
Viral-based Therapeutic Approaches for Reversal of ALS Pathology
逆转 ALS 病理的病毒治疗方法
- 批准号:
10685571 - 财政年份:2020
- 资助金额:
$ 19.8万 - 项目类别:
Viral-based Therapeutic Approaches for Reversal of ALS Pathology
逆转 ALS 病理的病毒治疗方法
- 批准号:
10054910 - 财政年份:2020
- 资助金额:
$ 19.8万 - 项目类别:
Rod-dependent Cone Viability Factor: Towards a prevention of blindness
视杆细胞依赖性视锥细胞活力因子:预防失明
- 批准号:
7626714 - 财政年份:2007
- 资助金额:
$ 19.8万 - 项目类别:
Rod-dependent Cone Viability Factor: Towards a prevention of blindness
视杆细胞依赖性视锥细胞活力因子:预防失明
- 批准号:
7333034 - 财政年份:2007
- 资助金额:
$ 19.8万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of CRISPR genome editor and its delivery strategy for C9orf72 frontotemporal dementia
C9orf72额颞叶痴呆的CRISPR基因组编辑器优化及其递送策略
- 批准号:
10746565 - 财政年份:2023
- 资助金额:
$ 19.8万 - 项目类别:
Development of a SYF2 antisense oligonucleotide treatment for ALS and FTD
开发治疗 ALS 和 FTD 的 SYF2 反义寡核苷酸
- 批准号:
10547625 - 财政年份:2023
- 资助金额:
$ 19.8万 - 项目类别:
Investigating the Role of MS4As in Amyotrophic Lateral Sclerosis
研究 MS4As 在肌萎缩侧索硬化症中的作用
- 批准号:
10751695 - 财政年份:2023
- 资助金额:
$ 19.8万 - 项目类别:
Axonal pathogenesis of human iPSC-derived motor neurons
人 iPSC 来源的运动神经元的轴突发病机制
- 批准号:
10604850 - 财政年份:2022
- 资助金额:
$ 19.8万 - 项目类别: