Bridging the gap between mutation & cellular effects: Defining the mechanisms of hypertrophic cardiomyopathy
弥合突变之间的差距
基本信息
- 批准号:10246981
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseActinsAffectAffinityAmericanArrhythmiaBehaviorBindingBiochemicalBiological AssayBiological ModelsBiomechanicsCRISPR/Cas technologyCardiacCardiac MyocytesCardiomyopathiesCellsClinicalCytoplasmDNA Sequence AlterationDevelopmentDilated CardiomyopathyDiseaseDisease modelElectron MicroscopyEnsureEventFiberFutureGene Expression ProfilingGene TargetingGeneral PopulationGenerationsGeneticGenetic DiseasesGoalsGrantHeadHeartHeart failureHumanHypertrophic CardiomyopathyHypertrophyIn VitroKineticsKnowledgeLaboratoriesLeadLearningLightLinkMeasuresMechanicsMitochondriaMolecularMorbidity - disease rateMutationMyosin ATPaseMyosin Heavy ChainsMyosin Regulatory Light ChainsOryctolagus cuniculusOxygen ConsumptionPathogenesisPatientsPharmacotherapyPhenotypePreparationPropertyProtein BiochemistryProteinsRecombinantsReproducibilityResearchResearch PersonnelSarcomeresSecondary toSeminalSignal PathwaySignal TransductionSkinStructureSturnus vulgarisSudden DeathSystemTestingTherapeutic InterventionTissuesTrainingWorkWritingbiophysical propertiesbiophysical techniquescareerdesigngain of functiongenetic approachimprovedindexinginduced pluripotent stem cellinnovationmitochondrial dysfunctionmyosin-binding protein Cnovelnovel therapeutic interventionprotein functionprotein protein interactionrisk stratificationskillssymposiumtargeted treatmenttherapeutic targettool
项目摘要
Hypertrophic cardiomyopathy (HCM) affects more than 1 in 500 Americans with an extensive burden
of morbidity in the form of arrhythmia, heart failure, and sudden death. More than 25 years since the discovery
of the genetic underpinnings of HCM, we continue to have limited understanding of the primary effect of
genetic mutation on protein function and it is unclear how the genetic mutation leads to hypertrophic signaling
in cardiomyocytes. This lack of understanding limits the development of effective pharmacotherapy for HCM.
The objective of this proposal is to further advance the knowledge of how mutations affect sarcomere function
using biochemical and biophysical approach using purified protein and skinned fiber, as well as human
induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) as tools for disease modeling to assess the
triggers leading to hypertrophy. Given the findings from prior biochemical assessment of myosin heavy chain
mutation that cause HCM, it is hypothesized that HCM mutations result in gain of function in sarcomere by
increase in number of myosin heads available for cross-bridge formation (Na) through protein interaction and
activation state of myosin. It is further hypothesized that increase in Na result in energy imbalance in cells due
to increased ATP usage, leading to altered Ca2+ dynamics and mitochondrial dysfunction.
In this proposal, 3 mutations in regulatory light chain (RLC) of myosin that are linked to HCM are
chosen to test the above hypothesis further: E22K, R58Q and D166V. In addition, D94A mutation that is linked
to dilated cardiomyopathy (DCM) is also chosen to assess the effect of mutation that causes the opposite
cardiac phenotype for comparison. Aim 1 measures the impact of HCM mutations on myosin's folded state, by
assessing protein-protein interaction between the RLC and other sarcomere components (including myosin
binding protein C) using novel binding affinity assay. Aim 2 quantifies the effect of HCM mutations on RLC
using skinned myofiber from rabbit and purified recombinant human protein, with respect to myosin
activation state by measuring the kinetics of myosin using fluorescent ATP. Finally, Aim 3 defines the cellular
effect of RLC mutations using hiPSC-CM, by measuring cell mechanics, Ca2+ dynamics and mitochondrial
function. I will particularly focus on obtaining properly matured hiPSC-CM by rigorous structural assessment.
The current proposal is designed to gain further understanding of molecular pathogenesis of HCM from
protein level to myofiber level, focusing on myosin's structural change leading to altered activation state. It will
also link these biochemical findings to biomechanical property at the cellular level, and transcriptional
profiling will be performed to identify new gene targets involved in hypertrophic signaling pathway. The
proposal will also allow me to learn further skills in myofiber and hiPSC-CM as new platforms for performing
functional analysis of cardiomyopathy model systems. Moving forward, this proposal will be the basis of my
independent R01 grant using these innovative approaches.
肥厚的心肌病(HCM)影响了500名以上的美国人,负担很大
心律不齐,心力衰竭和猝死的发病率。自发现以来已有25年以上
在HCM的遗传基础中,我们继续对
蛋白质功能上的基因突变,尚不清楚遗传突变如何导致肥厚的信号传导
在心肌细胞中。缺乏理解限制了HCM有效药物疗法的发展。
该提案的目的是进一步促进有关突变如何影响肌节功能的知识
使用纯化的蛋白质和皮肤纤维以及人类使用生化和生物物理方法以及人
诱导多能干细胞衍生的心肌细胞(HIPSC-CM)作为疾病建模的工具评估
导致肥大的触发因素。考虑到肌球蛋白重链的先前生化评估的发现
引起HCM的突变,假设HCM突变导致Saromere的功能增长
通过蛋白质相互作用和
肌球蛋白的激活状态。进一步假设NA的增加导致细胞的能量不平衡
增加ATP的使用情况,导致CA2+动力学和线粒体功能障碍改变。
在此提案中,与HCM相关的肌球蛋白调节轻链(RLC)中的3个突变是
选择进一步检验上述假设:E22K,R58Q和D166V。另外,链接的D94a突变
还选择了扩张的心肌病(DCM)来评估引起相反的突变的作用
心脏表型进行比较。 AIM 1通过
评估RLC与其他肌动成分之间的蛋白质 - 蛋白质相互作用(包括肌球蛋白
结合蛋白c)使用新型结合亲和力测定。 AIM 2量化了HCM突变对RLC的影响
相对于肌球蛋白,使用兔子的皮肤肌纤维和纯化的重组人蛋白
通过使用荧光ATP测量肌球蛋白的动力学来激活状态。最后,AIM 3定义了细胞
通过测量细胞力学,CA2+动力学和线粒体的RLC突变的影响
功能。我将特别专注于通过严格的结构评估获得正确成熟的HIPSC-CM。
当前的建议旨在进一步了解HCM的分子发病机理
蛋白质水平达到肌纤维水平,重点是肌球蛋白的结构变化,导致激活状态改变。会
还将这些生化发现与细胞水平的生物力学特性联系起来和转录
将进行分析以识别肥厚信号通路涉及的新基因靶标。这
提案还可以使我能够在Myofiber和HIPSC-CM中学习进一步的技能,作为表演的新平台
心肌病模型系统的功能分析。向前迈进,该提议将是我的基础
独立R01使用这些创新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masataka Kawana其他文献
Masataka Kawana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Masataka Kawana', 18)}}的其他基金
Bridging the gap between mutation & cellular effects: Defining the mechanisms of hypertrophic cardiomyopathy
弥合突变之间的差距
- 批准号:
10459570 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
Bridging the gap between mutation & cellular effects: Defining the mechanisms of hypertrophic cardiomyopathy
弥合突变之间的差距
- 批准号:
10019585 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
Bridging the gap between mutation & cellular effects: Defining the mechanisms of hypertrophic cardiomyopathy
弥合突变之间的差距
- 批准号:
10647828 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
相似海外基金
Blunting of the Myofilament Beta-Adrenergic Response in HCM: Structural-Dynamic Mechanisms
HCM 中肌丝 β 肾上腺素反应的钝化:结构动力学机制
- 批准号:
10748921 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Host Ca2+, actin, and ATP production in rickettsia-endothelial cell dysfunction
立克次体内皮细胞功能障碍中宿主 Ca2、肌动蛋白和 ATP 的产生
- 批准号:
10659249 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
Host Ca2+, actin, and ATP production in rickettsia-endothelial cell dysfunction
立克次体内皮细胞功能障碍中宿主 Ca2、肌动蛋白和 ATP 的产生
- 批准号:
10509838 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
Mechanochemistry of myosin mutations that cause cardiomyopathy
导致心肌病的肌球蛋白突变的机械化学
- 批准号:
10624860 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Mechanochemistry of myosin mutations that cause cardiomyopathy
导致心肌病的肌球蛋白突变的机械化学
- 批准号:
10230396 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别: