Mechanisms of hemodynamic-force-regulated vascular smooth muscle cell recruitment and attachment

血流动力学力调节血管平滑肌细胞募集和附着的机制

基本信息

  • 批准号:
    10247363
  • 负责人:
  • 金额:
    $ 1.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2022-01-31
  • 项目状态:
    已结题

项目摘要

Project summary In the future, an important step in medical treatment will be the replacement of diseased or injured organs with engineered organs grown outside the body. However, one major impediment towards this goal is the ability for tissue engineers to grow complex and functional blood vessels that supply oxygen and nutrients to these externally grown organs. A missing piece of the puzzle is in knowing how differences in thickness of the blood vessel wall forms throughout the vasculature. For this reason, researchers must understand how larger- diameter blood vessels (located close to the heart) form thick vessel walls composed of layers of vascular smooth muscle cells (vSMCs), and how small-diameter vessels (located far away from the heart) form thin or absent layers of vSMCs. These differences in vessel wall thickness are critical requirements for the formation of a functional vasculature, but it is unclear how wall thickness is regulated. Thus, the long-term objective of this proposal is to elucidate the mechanisms governing the formation of blood vessel wall thickness. From our previous studies, we determined that developing blood vessels form thick vessel walls based on extent of exposure to blood flow forces. Thus, high-flow vessels recruit and attach to more vSMCs than low-flow vessels. What remains unknown are the specific mechanisms explaining how the force of blood flow (hemodynamic force) regulates vSMC recruitment and attachment. Using the mouse embryonic model, a team of undergraduate students, master’s students and the principal investigator will explore two major mechanisms regarding how vessel wall thickness is attained. In aim 1, we will test the whether hemodynamic force regulates expression of several Semaphorin3 signaling proteins (Sema3F/G and Sema3A) to control vSMC recruitment to high-flow vessels. This aim will be investigated by disrupting these Sema3 proteins to determine if this impedes vSMC recruitment to the vasculature, and by rescuing the vSMC recruitment defects exhibited upon reduction of blood flow, by reintroducing the Sema3 protein gradients. In aim 2, we will test whether hemodynamic force regulates the adhesiveness of vessels to promote vSMC attachment to vessels. This aim will be investigated by determining whether reduction of blood flow reduces the ability for vSMCs to attach to vessels by attenuating expression of adhesive molecules, such as extracellular matrix genes (or inhibitors to extracellular matrix-degrading enzymes), and by upregulating expression of extracellular matrix-degrading genes (Matrix metalloproteinase [Mmp] inhibitors). In this aim, we will also determine if use of Mmp inhibitors will enhance extracellular matrix formation, and as a result enhance the adhesion of vessels to vSMCs. By the determining the mechanisms of vessel wall investment with vSMCs, this will allow researchers to identify an appropriate set of molecular tools that will be used to engineer functional blood vessels, as well as repair damaged blood vessels in adults. Further, these studies will help support the training of undergraduate and master’s students in biomedical research.
项目概要 未来医疗的一个重要步骤将是用器官替代患病或受伤的器官。 然而,实现这一目标的一个主要障碍是其能力。 组织工程师培育出复杂且有功能的血管,为这些血管提供氧气和营养 体外生长的器官的一个缺失部分是了解血液厚度的差异。 因此,研究人员必须了解血管壁是如何形成的。 直径血管(靠近心脏)形成由血管层组成的厚血管壁 平滑肌细胞 (vSMC),以及小直径血管(远离心脏)如何形成薄或 缺乏 vSMC 层。血管壁厚度的这些差异是形成的关键要求。 功能性脉管系统的功能,但尚不清楚壁厚是如何调节的,因此,其长期目标是。 该提案旨在阐明控制血管壁厚度形成的机制。 之前的研究中,我们确定发育中的血管会根据血管壁的程度形成厚血管壁。 因此,高流量血管比低流量血管募集并附着更多的 vSMC。 目前尚不清楚的是解释血流力量的具体机制。 (血流动力学力)调节 vSMC 募集和附着,一个团队使用小鼠胚胎模型。 本科生、硕士生和首席研究员将探索两大机制 关于如何获得血管壁厚度 在目标 1 中,我们将测试是否有血流动力。 调节多种 Semaphorin3 信号蛋白(Sema3F/G 和 Sema3A)的表达以控制 vSMC 将通过破坏这些 Sema3 蛋白来确定向高流量血管的募集。 如果这阻碍了 vSMC 向脉管系统的募集,并通过挽救表现出的 vSMC 募集缺陷 在血流量减少后,通过重新引入 Sema3 蛋白梯度,我们将测试是否。 血流动力学调节血管的粘附性,以促进 vSMC 附着于血管。 将通过确定血流量的减少是否会降低 vSMC 附着的能力来进行研究 通过减弱粘附分子的表达来抑制血管,例如细胞外基质基因(或抑制剂) 细胞外基质降解酶),并通过上调细胞外基质降解酶的表达 基因(基质金属蛋白酶 [Mmp] 抑制剂) 在此目标中,我们还将确定是否使用 Mmp 抑制剂。 将增强细胞外基质的形成,从而增强血管与 vSMC 的粘附。 确定 vSMC 的血管壁投资机制,这将使研究人员能够确定 一套适当的分子工具,将用于设计功能性血管以及修复 此外,这些研究将有助于支持本科生和成人的培训。 从事生物医学研究的硕士生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan S. Udan其他文献

Visualizing Blood Vessel Development in Cultured Mouse Embryos Using Lightsheet Microscopy.
使用光片显微镜可视化培养小鼠胚胎中的血管发育。
  • DOI:
    10.1007/978-1-0716-1480-8_11
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samantha J. Fredrickson;T. Hoog;Ryan S. Udan
  • 通讯作者:
    Ryan S. Udan
Comparison of optical projection tomography and optical coherence tomography for assessment of murine embryonic development
光学投影断层扫描和光学相干断层扫描评估小鼠胚胎发育的比较
  • DOI:
    10.1117/12.2078319
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Manmohan Singh;Achuth Nair;T. Vadakkan;Victor G. Piazza;Ryan S. Udan;Michael V. Frazier;T. Janecek;M. Dickinson;K. Larin
  • 通讯作者:
    K. Larin

Ryan S. Udan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan S. Udan', 18)}}的其他基金

Mechanisms of hemodynamic-force-regulated vascular smooth muscle cell recruitment and attachment
血流动力学力调节血管平滑肌细胞募集和附着的机制
  • 批准号:
    10046374
  • 财政年份:
    2020
  • 资助金额:
    $ 1.05万
  • 项目类别:

相似国自然基金

电活性骨粘合剂通过调控神经源性外泌体释放促进骨质疏松粉碎性骨折快速愈合的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于溶剂响应性缠结高分子的动态水环境适用粘合剂
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
动力锂电池正极涂布快速制造中粘合剂分布均匀性调控及能耗优化研究
  • 批准号:
    51905361
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
预应力用缓粘结粘合剂固化机理及流变性研究
  • 批准号:
    51578557
  • 批准年份:
    2015
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Novel nanoparticles to stimulate therapeutic angiogenesis in peripheral arterial disease
刺激外周动脉疾病治疗性血管生成的新型纳米颗粒
  • 批准号:
    10756875
  • 财政年份:
    2022
  • 资助金额:
    $ 1.05万
  • 项目类别:
Is inhibiting pili electrical conductivity a new anti-virulence strategy?
抑制菌毛导电性是一种新的抗毒策略吗?
  • 批准号:
    10387218
  • 财政年份:
    2022
  • 资助金额:
    $ 1.05万
  • 项目类别:
Multifidelity and multiscale modeling of the spleen function in sickle cell disease with in vitro, ex vivo and in vivo validations
镰状细胞病脾功能的多保真度和多尺度建模,并进行体外、离体和体内验证
  • 批准号:
    10685262
  • 财政年份:
    2020
  • 资助金额:
    $ 1.05万
  • 项目类别:
Handheld 3D Bioprinting of Self-Healing Hydrogels for Vocal Fold Reconstruction
用于声带重建的自愈水凝胶的手持式 3D 生物打印
  • 批准号:
    10038971
  • 财政年份:
    2020
  • 资助金额:
    $ 1.05万
  • 项目类别:
Dysregulation of Platelet-von Willebrand Factor Interaction in Trauma-Induced Coagulopathy
创伤性凝血病中血小板-血管性血友病因子相互作用的失调
  • 批准号:
    10559557
  • 财政年份:
    2020
  • 资助金额:
    $ 1.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了