Comparative analysis between patient-derived models of pancreatic ductal adenocarcinomas and matched tumor specimens

患者来源的胰腺导管腺癌模型与匹配肿瘤标本之间的比较分析

基本信息

  • 批准号:
    10238080
  • 负责人:
  • 金额:
    $ 71.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-12 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer, with a 5-year survival rate of < 10%; it is predicted to become the 2nd leading cause of cancer-related deaths in the US by 2020. Somatic alterations of four driver genes (KRAS, TP53, CDKN2A, and SMAD4) are common among many cases of PDA; however, PDA can be phenotypically categorized into multiple neoplastic subtypes, each with myriad types of stroma and anti-tumor immunity. Only incremental clinical advances have been made in the treatment of PDA, potentially due to the paucity of well-annotated and validated patient-derived models of pancreatic cancer available to the research community. As a first step to translating the use of patient-derived models of cancer (PDMCs), we must identify the strengths and limitations of each type of PDMC, including whether PDMCs mirror genetic and biologic characteristics of the human, parent tumor. Herein, we propose a multi-institutional project designed to extend our existing library of PDA PDMCs and depict which model(s) best represent specific aspects of their parent tumors. PDMCs that capture an inter-tumor heterogeneity and can maintain pro-oncogenic regulatory pathways are critically needed to better enhance current therapies and identify novel therapeutic strategies. We are currently collecting PDA specimens and generating conditionally re-programmed cells (CRC), organoids (ORG), and patient-derived xenografts (PDX) through the Oregon Pancreas Tissue Registry and from a targeted therapy (i.e., PARP inhibitor-based) clinical trial. The PDMCs generated have well-annotated clinical outcomes and drug response data. Here, we will systematically and thoroughly profile matched PDMCs to determine the significance of key molecular networks (including KRAS, MYC, DDR, HuR, and inflammation) and phenotypic subpopulations that best match their respective tumors from patients. We will also build more complex PDMCs by adding elements of the parent tumor microenvironment that can restore phenotypes absent in simple PDMCs. Complementary drug sensitivity studies will be tested in both simple and complex PDMCs as another metric of their relatedness to the parent tumor and patient responses. To perform this work, we have assembled a multi- disciplinary team with expertise in clinical oncology, specimen collection/processing, pathology, cancer model generation, tumor microenvironment, computational biology, RNA biology, DNA repair, and database management. Work will be performed in three specific aims: Aim 1, generate and validate PDMCs; determine if key PDA signaling pathways are conserved with the matched parent tumor; Aim 2, identify PDMCs from clinically tracked specimens that best predict drug responses in patients; identify and target key pathways of resistance; Aim 3: identify signaling pathways and drug responses that are lost in simple PDMCs but that can be restored by adding known elements of the parent tumor (e.g., stromal mesenchymal, endothelial and immune cells). An overarching deliverable of this study will be to share well-characterized, validated PDMCs and molecular insights into PDA biology and drug responses with the pancreatic cancer community.
项目概要 胰腺导管腺癌(PDA)是一种致命的癌症,5年生存率<10%;据预测 到 2020 年,将成为美国癌症相关死亡的第二大原因。 四名司机的躯体改变 基因(KRAS、TP53、CDKN2A 和 SMAD4)在许多 PDA 病例中很常见;然而,PDA 可以 表型分为多种肿瘤亚型,每种亚型都有多种基质类型和抗肿瘤作用 免疫。 PDA 的治疗仅取得了渐进的临床进展,这可能是由于 缺乏可用于研究的注释良好且经过验证的源自患者的胰腺癌模型 社区。作为转化患者衍生癌症模型 (PDMC) 使用的第一步,我们必须确定 每种类型的 PDMC 的优点和局限性,包括 PDMC 是否反映遗传和生物学 人类母体肿瘤的特征。在此,我们提出了一个多机构项目,旨在扩展 我们现有的 PDA PDMC 库并描述哪些模型最能代表其父级的特定方面 肿瘤。 PDMC 捕获肿瘤间异质性并可以维持促癌调控途径 迫切需要更好地增强现有疗法并确定新的治疗策略。我们是 目前正在收集 PDA 样本并生成条件重编程细胞 (CRC)、类器官 (ORG)、 以及通过俄勒冈州胰腺组织登记处和靶向治疗获得的患者来源的异种移植物 (PDX) (即基于 PARP 抑制剂的)临床试验。生成的 PDMC 具有详细注释的临床结果和药物 响应数据。在这里,我们将系统、彻底地分析匹配的 PDMC,以确定其重要性 关键分子网络(包括 KRAS、MYC、DDR、HuR 和炎症)和表型亚群 与患者各自的肿瘤最匹配。我们还将通过添加来构建更复杂的 PDMC 亲本肿瘤微环境的元素可以恢复简单 PDMC 中缺乏的表型。 补充药物敏感性研究将在简单和复杂的 PDMC 中进行测试,作为另一个指标 它们与母体肿瘤和患者反应的相关性。为了完成这项工作,我们组装了一个多 拥有临床肿瘤学、标本采集/处理、病理学、癌症模型专业知识的学科团队 生成、肿瘤微环境、计算生物学、RNA生物学、DNA修复和数据库 管理。工作将围绕三个具体目标进行:目标 1,生成并验证 PDMC;确定是否 关键的 PDA 信号通路与相匹配的亲本肿瘤是保守的;目标 2,从临床中鉴定 PDMC 追踪最能预测患者药物反应的样本;识别并瞄准关键的耐药途径; 目标 3:识别简单 PDMC 中丢失但可以恢复的信号通路和药物反应 通过添加母体肿瘤的已知成分(例如基质间充质细胞、内皮细胞和免疫细胞)。一个 这项研究的首要成果将是分享经过充分表征、经过验证的 PDMC 和分子见解 与胰腺癌界一起研究 PDA 生物学和药物反应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Brody其他文献

Jonathan Brody的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Brody', 18)}}的其他基金

Developing a patient derived model platform to treat BRCA1/2-mutant pancreatic cancers
开发患者衍生模型平台来治疗 BRCA1/2 突变胰腺癌
  • 批准号:
    10689186
  • 财政年份:
    2022
  • 资助金额:
    $ 71.43万
  • 项目类别:
Comparative analysis between patient-derived models of pancreatic ductal adenocarcinomas and matched tumor specimens
患者来源的胰腺导管腺癌模型与匹配肿瘤标本之间的比较分析
  • 批准号:
    10017165
  • 财政年份:
    2019
  • 资助金额:
    $ 71.43万
  • 项目类别:
Comparative analysis between patient-derived models of pancreatic ductal adenocarcinomas and matched tumor specimens
患者来源的胰腺导管腺癌模型与匹配肿瘤标本之间的比较分析
  • 批准号:
    10454908
  • 财政年份:
    2019
  • 资助金额:
    $ 71.43万
  • 项目类别:
Comparative analysis between patient-derived models of pancreatic ductal adenocarcinomas and matched tumor specimens
患者来源的胰腺导管腺癌模型与匹配肿瘤标本之间的比较分析
  • 批准号:
    10670310
  • 财政年份:
    2019
  • 资助金额:
    $ 71.43万
  • 项目类别:
Targeting HuR to improve a synthetic lethal therapy for pancreatic cancer
以 HuR 为靶点改进胰腺癌的合成致死疗法
  • 批准号:
    10240962
  • 财政年份:
    2016
  • 资助金额:
    $ 71.43万
  • 项目类别:
Utilizing HuR to optimize the treatment of pancreatic cancer
利用 HuR 优化胰腺癌的治疗
  • 批准号:
    8702474
  • 财政年份:
    2014
  • 资助金额:
    $ 71.43万
  • 项目类别:

相似国自然基金

员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
  • 批准号:
    72302005
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 71.43万
  • 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
  • 批准号:
    10831226
  • 财政年份:
    2023
  • 资助金额:
    $ 71.43万
  • 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10839518
  • 财政年份:
    2023
  • 资助金额:
    $ 71.43万
  • 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
  • 批准号:
    10740079
  • 财政年份:
    2023
  • 资助金额:
    $ 71.43万
  • 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
  • 批准号:
    10637462
  • 财政年份:
    2023
  • 资助金额:
    $ 71.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了