Structure, Mechanism and Interactions of Type IA Topoisomerases
IA型拓扑异构酶的结构、机制和相互作用
基本信息
- 批准号:10093404
- 负责人:
- 金额:$ 20.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAddressAffectAntibiotic ResistanceAntibioticsBacterial DNA Topoisomerase IBiochemicalBiological AssayCell physiologyCleaved cellComplementary DNAComplexDNADNA-Directed RNA PolymeraseDrug resistanceEnzymesFaceFutureGenetic TranscriptionGenomeGenome StabilityGenus MycobacteriumGoalsHuman ActivitiesIn VitroInfectionInvestigationKnowledgeLifeLigandsMeasuresModelingMolecularMolecular ConformationMovementMutationPlayRNARegulationRelaxationReplication-Associated ProcessResearchResearch ActivityRoleSeminalSingle-Stranded DNAStructureSuperhelical DNATOP1 geneTopoisomeraseTopoisomerase IIIToxinX-Ray Crystallographyglobal healthin vivoinsightmolecular dynamicsmutantneurodevelopmentnew therapeutic targetpathogenic bacteriapreventrecombinational repairsingle moleculesmall moleculetargeted treatmenttool
项目摘要
Project Summary/Abstract
Type IA topoisomerases are ubiquitous in the three kingdoms of life, and play critically important roles in
maintaining proper DNA topology during the vital cellular processes of replication, transcription, recombination,
and repair. The PI’s research activities have provided seminal biochemical and structural findings for this class
of essential genome regulator, and continue to address key questions on the catalytic mechanism of type IA
topoisomerases and provide new insights into their functional and regulatory interactions. This information is
needed to utilize type IA topoisomerases present in every bacterial pathogen as a novel therapeutic target for
finding new antibiotics to help face our serious global health challenge of antibiotic resistance. Type IA
topoisomerases catalyze the relaxation of negatively supercoiled DNA by cleaving a single DNA strand in the
underwound duplex DNA and passing the complementary DNA single strand through the break before
religation of the cleaved strand to change the DNA topology. The molecular mechanism of the large enzyme
conformational changes that are required for the coordinated movement of the passing DNA in and out of the
DNA gate is the critical barrier for elucidating how bacterial TOP1 can relax negatively supercoiled DNA with
high efficiency to prevent hypernegative DNA supercoiling and R-loop stabilization that can arise during
transcription. This important function of bacterial TOP1 is facilitated by the direct TOP1 interaction with RNA
polymerase that we have characterized and found to be targeted by endogenous toxin in mycobacteria. For
future studies, we will create new TOP1 mutants perturbed in interdomain interactions at a distance from the
active site and investigate the effect on the in vivo relaxation activity and in vitro interactions with DNA
substrate. Mutants with reduced catalytic efficiency will be further studied to determine if the mutations affected
the gate opening-closing dynamics and DNA strand passage. We will capture new structural conformations of
the TOP1-DNA complex that may represent different stages of the catalytic cycle with X-ray crystallography
and measure the gate opening-closing dynamics with single molecule assays. Structural studies will also
incorporate other ligands including RNA. Type IA topoisomerases have evolved to include TOP1 and TOP3
enzymes in all three kingdoms of life that possess dual activities on both DNA and RNA substrates. The RNA
topoisomerase activity of human TOP3B has been shown to be required for neurodevelopment and the
enzyme is also involved in R-loop suppression and genome stability. We are modeling the RNA interaction of
type IA topoisomerases with molecular dynamics simulations to determine how the DNA and RNA substrate
may be accommodated differentially by change in enzyme conformation and interacting residues. We have
initiated studies to identify a separation of function mutation or small molecule probe that can be used to
distinguish between the DNA and RNA topoisomerase activity in vivo. Such research tools for study of cellular
RNA topoisomerase activity and regulation will have an important and lasting impact on the field.
项目摘要/摘要
IA型拓扑异构酶在生命的三个王国中无处不在,并且在至关重要的角色中起着至关重要的作用
在重复,转录,重组的重要细胞过程中,保持适当的DNA拓扑结构
和维修。 PI的研究活动为此提供了半生物化学和结构性发现
基本基因组调节剂,并继续解决有关IA型催化机制的关键问题
拓扑异构酶并为其功能和调节性相互作用提供新的见解。此信息是
需要利用每种细菌病原体中存在的IA型拓扑异构酶作为一种新的治疗靶点
寻找新的抗生素,以帮助面对我们对抗生素耐药性的严重全球健康挑战。类型IA
拓扑异构酶通过在裂解单个DNA链中催化否定性超螺旋DNA的放松
内部的双链DNA并通过完整的DNA单链穿过休息
切割链的宗教改变DNA拓扑。大酶的分子机制
传递DNA进出的协调运动所需的构象变化
DNA门是阐明细菌top1如何放松超涂层的DNA的关键障碍
高效率以防止高性DNA超螺旋和R环稳定,可能会在
转录。细菌TOP1的这一重要功能得到了与RNA的直接TOP1相互作用的支持
我们已经表征并发现由内源性毒素在分枝杆菌中靶向的聚合酶。为了
未来的研究,我们将创建新的Top1突变体
主动部位并研究对体内弛豫活动的影响以及与DNA的体外相互作用
基材。催化效率降低的突变体将进一步研究,以确定突变是否影响
门开口的动力学和DNA链通道。我们将捕获新的结构构象
X射线晶体学的Top1-DNA复合物可能代表催化循环的不同阶段
并用单分子测定测量栅极开放闭合动力学。结构研究也将
结合包括RNA在内的其他配体。 IA型拓扑异构酶已经发展为包括TOP1和TOP3
在生命的所有三个王国中,都有在DNA和RNA底物上都具有双重活性的酶。 RNA
人类top3b的拓扑异构酶活性已被证明是神经发育和
酶还参与R环抑制和基因组稳定性。我们正在建模RNA相互作用
带有分子动力学模拟的IA型拓扑异构酶,以确定DNA和RNA底物如何
酶会议和相互作用残差的变化可能会有所不同。我们有
发起的研究以确定功能突变或小分子探针的分离
区分体内的DNA和RNA拓扑异构酶活性。研究细胞研究的研究工具
RNA拓扑异构酶的活性和调节将对该领域产生重要而持久的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuk-Ching Tse-Dinh其他文献
Yuk-Ching Tse-Dinh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuk-Ching Tse-Dinh', 18)}}的其他基金
Structure, Mechanism and Interactions of Type IA Topoisomerases
IA型拓扑异构酶的结构、机制和相互作用
- 批准号:
10389425 - 财政年份:2021
- 资助金额:
$ 20.92万 - 项目类别:
Structure, Mechanism and Interactions of Type IA Topoisomerases
IA型拓扑异构酶的结构、机制和相互作用
- 批准号:
10569676 - 财政年份:2021
- 资助金额:
$ 20.92万 - 项目类别:
HTS assay development targeting Yersinia pestis topoisomerase I
针对鼠疫耶尔森菌拓扑异构酶 I 的 HTS 检测开发
- 批准号:
8234706 - 财政年份:2010
- 资助金额:
$ 20.92万 - 项目类别:
HTS assay development targeting Yersinia pestis topoisomerase I
针对鼠疫耶尔森菌拓扑异构酶 I 的 HTS 检测开发
- 批准号:
7991064 - 财政年份:2010
- 资助金额:
$ 20.92万 - 项目类别:
Bacterial cell killing by topoisomerase I mediated DNA lesion
拓扑异构酶 I 介导的 DNA 损伤杀死细菌细胞
- 批准号:
8070106 - 财政年份:2010
- 资助金额:
$ 20.92万 - 项目类别:
Bacterial cell killing by topoisomerase I mediated DNA lesion
拓扑异构酶 I 介导的 DNA 损伤杀死细菌细胞
- 批准号:
7756650 - 财政年份:2006
- 资助金额:
$ 20.92万 - 项目类别:
Bacterial cell killing by topoisomerase I mediated DNA lesion
拓扑异构酶 I 介导的 DNA 损伤杀死细菌细胞
- 批准号:
7169238 - 财政年份:2006
- 资助金额:
$ 20.92万 - 项目类别:
Bacterial cell killing by topoisomerase I mediated DNA lesion
拓扑异构酶 I 介导的 DNA 损伤杀死细菌细胞
- 批准号:
8186092 - 财政年份:2006
- 资助金额:
$ 20.92万 - 项目类别:
Bacterial cell killing topoisomerase I--DNA lesion
细菌细胞杀伤拓扑异构酶I--DNA损伤
- 批准号:
7083065 - 财政年份:2006
- 资助金额:
$ 20.92万 - 项目类别:
Bacterial cell killing by topoisomerase I mediated DNA lesion
拓扑异构酶 I 介导的 DNA 损伤杀死细菌细胞
- 批准号:
7333269 - 财政年份:2006
- 资助金额:
$ 20.92万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 20.92万 - 项目类别:
Molecular Mechanisms that Control mRNA Decapping in Biological Condensates
控制生物浓缩物中 mRNA 脱帽的分子机制
- 批准号:
10577994 - 财政年份:2023
- 资助金额:
$ 20.92万 - 项目类别:
Actions of spiropyrimidinetriones against bacterial type II topoisomerases
螺嘧啶三酮对细菌 II 型拓扑异构酶的作用
- 批准号:
10750473 - 财政年份:2023
- 资助金额:
$ 20.92万 - 项目类别:
Novel Therapeutics for Heart Failure: Modified, Water-Soluble Caveolin-1 Scaffolding Domain Peptides with Improved Characteristics for Drug Development
心力衰竭的新型疗法:修饰的水溶性 Caveolin-1 支架结构域肽,具有改进的药物开发特性
- 批准号:
10599654 - 财政年份:2023
- 资助金额:
$ 20.92万 - 项目类别:
Modulating Fibrinolysis Dynamics by Leveraging Multivalent Avidity to Control Enzyme Activity
通过利用多价亲和力控制酶活性来调节纤维蛋白溶解动力学
- 批准号:
10635496 - 财政年份:2023
- 资助金额:
$ 20.92万 - 项目类别: