A Gata456 Pipeline of Discovery
Gata456 发现管道
基本信息
- 批准号:10092209
- 负责人:
- 金额:$ 81.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-10 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAllelesAnimalsAreaBiological ModelsBiologyCardiacCardiomyopathiesCardiovascular DiseasesCell TherapyCellsCodeDevelopmentDifferentiation AntigensDisease modelEndocardiumEpicardiumEpigenetic ProcessGATA4 geneGenerationsGenesGeneticGoalsGrowthHeartHeart AtriumHeart DiseasesHumanHypertrophyIndividualLeadLifeLocationMesodermMorphogenesisMutationMyocardialMyocardiumNatural regenerationOrganPhenotypePositioning AttributeResearch PersonnelSyndromeTetralogy of FallotTherapeuticTissuesTubeVentricular Septal DefectsZebrafishbicuspid aortic valvecardiogenesiscardioprotectioncellular developmentfamilial dilated cardiomyopathyhuman embryonic stem cellhuman pluripotent stem cellloss of functionnovelprogenitorprogramstherapeutic targettranscription factor
项目摘要
Three highly related genes, Gata4, Gata5, and Gata6 (referred to here as Gata456) regulate essentially every
aspect of cardiac biology, from generation of precardiac mesoderm, specification and differentiation of
endocardial, epicardial, and myocardial progenitors, heart tube formation, growth and morphogenesis,
septation and valve formation, cardioprotection and hypertrophy, and regeneration. How the three genes
regulate the spatial, temporal, and tissue-specific genetic and epigenetic networks that underlie all of these
disparate programs is poorly understood. Furthermore, mutations in each of the genes have individually been
associated with human cardiomyopathies, including atrial and ventricular septal defects, tetralogy of Fallot,
bicuspid aortic valve syndrome, and familial dilated cardiomyopathy. Other transcription factor genes, and
some terminal differentiation markers are known to be regulated by Gata456, but a major gap in understanding
is the identify of the key target genes that control intermediary functions such as lineage specification, growth,
morphogenesis, and cardio-protection. We propose a new program as a “Pipeline of Discovery” to identify
these downstream genes and probe their function in cardiogenesis and cardiac biology. The overall goal is to
define the function of each Gata456 gene throughout development and adult life in various cardiac tissues
including endocardium, myocardium, and epicardium. We seek to break the code for how the relative timing
and location of expression for each gene impacts cell fate and survival, and organ morphogenesis and
function. Complementary model systems exploit specific advantages and resolve species-specific distinctions:
the zebrafish for understanding cardiogenesis including morphogenesis, and human pluripotent stem cells for
understanding human cell identity and disease modeling. We have compiled a “toolbox” of zebrafish and hESC
lines and an expert team of investigators to facilitate a comprehensive analysis of gain-and loss-of-function
phenotypes, with a strong track record for such analyses and discovery of novel downstream targets. A
breakthrough is needed to understand how Gata456 controls all the various aspects of cardiogenesis. We are
finally in a position to define this code, by a systematic manipulation of each factor in different developmental
and tissue contexts, leading to discovery of specific key downstream target genes that carry out these diverse
functions. This project will not directly develop therapeutics for cardiac disease, but it will likely enhance
development of cellular therapies. Chiefly, it will break ground beyond current descriptions of regulatory
networks in two areas: 1) Defining the impact for loss or gain of individual Gata456 alleles at specific
developmental stages and in specific tissues to precisely define functions in developing animals (zebrafish)
and human cells (derived from human pluripotent cells). 2) Identifying the key downstream Gata456 target
genes that are responsible for stage and tissue-specific functions, recognizing these as “lead hit” therapeutic
targets for treating cardiac disease.
!
三个高度相关的基因 Gata4、Gata5 和 Gata6(此处称为 Gata456)基本上调控着每一个基因。
心脏生物学方面,从心前中胚层的产生、规范和分化
心内膜、心外膜和心肌祖细胞、心管形成、生长和形态发生,
分隔和瓣膜形成、心脏保护和肥大以及三个基因如何再生。
调节所有这些基础的空间、时间和组织特异性遗传和表观遗传网络
此外,人们对不同基因的突变知之甚少。
与人类心肌病相关,包括房间隔缺损、室间隔缺损、法洛四联症、
二叶式主动脉瓣综合征和家族性扩张型心肌病,以及其他转录因子基因。
已知一些终末分化标记物受 Gata456 调节,但理解上存在重大差距
是控制中间功能(例如谱系规范、生长、
我们提出了一个新计划作为“发现管道”来识别。
这些下游基因并探讨它们在心脏发生和心脏生物学中的功能。
定义每个 Gata456 基因在整个发育和成年生活中在各种心脏组织中的功能
包括心内膜、心肌和心外膜,我们寻求打破相对时间的密码。
每个基因的表达和位置都会影响细胞的命运和存活,以及器官的形态发生和
互补模型系统利用特定优势并解决物种特定的差异:
斑马鱼用于了解心脏发生(包括形态发生),而人类多能干细胞用于了解
了解人类细胞身份和疾病模型我们编制了斑马鱼和 hESC 的“工具箱”。
线和专家调查小组,以促进对功能获得和丧失的全面分析
表型,在此类分析和发现新下游靶点 A 方面拥有良好的记录。
需要突破来了解 Gata456 如何控制心脏发生的各个方面。
最终能够通过系统地操纵不同发育阶段的每个因素来定义这个代码
和组织背景,导致发现执行这些不同的特定关键下游靶基因
该项目不会直接开发心脏病的治疗方法,但可能会增强功能。
首先,它将突破目前监管描述之外的领域。
网络有两个领域:1) 定义特定 Gata456 等位基因损失或增加的影响
发育阶段和特定组织,以精确定义发育中动物(斑马鱼)的功能
和人类细胞(源自人类多能细胞) 2) 识别关键的下游 Gata456 靶点。
负责阶段和组织特异性功能的基因,将其识别为“先导”治疗
治疗心脏病的目标。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd R Evans其他文献
Todd R Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd R Evans', 18)}}的其他基金
Methods for detection of dynamic intracellular signals in single adult spermatogonial stem cells
单个成体精原干细胞动态细胞内信号的检测方法
- 批准号:
10666116 - 财政年份:2023
- 资助金额:
$ 81.07万 - 项目类别:
Regulation of DNA methylation by TETs and QSER1
TET 和 QSER1 对 DNA 甲基化的调节
- 批准号:
10585325 - 财政年份:2022
- 资助金额:
$ 81.07万 - 项目类别:
Regulation of DNA methylation by TETs and QSER1
TET 和 QSER1 对 DNA 甲基化的调节
- 批准号:
10709595 - 财政年份:2022
- 资助金额:
$ 81.07万 - 项目类别:
Negative feedback regulation of growth factor signaling in adult spermatogonial stem cells
成体精原干细胞生长因子信号传导的负反馈调节
- 批准号:
10570919 - 财政年份:2021
- 资助金额:
$ 81.07万 - 项目类别:
A molecular pathway controlling cardiomyocyte specification.
控制心肌细胞规格的分子途径。
- 批准号:
8975788 - 财政年份:2011
- 资助金额:
$ 81.07万 - 项目类别:
A molecular pathway controlling cardiomyocyte specification.
控制心肌细胞规格的分子途径。
- 批准号:
8388798 - 财政年份:2011
- 资助金额:
$ 81.07万 - 项目类别:
A molecular pathway controlling cardiomyocyte specification.
控制心肌细胞规格的分子途径。
- 批准号:
8584322 - 财政年份:2011
- 资助金额:
$ 81.07万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 81.07万 - 项目类别:
Neural crest-derived pelvic ganglia and the effects of developmental deficits on lower urinary tract innervation
神经嵴衍生的盆腔神经节和发育缺陷对下尿路神经支配的影响
- 批准号:
10719065 - 财政年份:2023
- 资助金额:
$ 81.07万 - 项目类别:
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 81.07万 - 项目类别:
Optimization of CRISPR genome editor and its delivery strategy for C9orf72 frontotemporal dementia
C9orf72额颞叶痴呆的CRISPR基因组编辑器优化及其递送策略
- 批准号:
10746565 - 财政年份:2023
- 资助金额:
$ 81.07万 - 项目类别:
Identifying new regulators of cardiac fibrosis and inflammation using zebrafish
使用斑马鱼识别心脏纤维化和炎症的新调节因子
- 批准号:
10892436 - 财政年份:2023
- 资助金额:
$ 81.07万 - 项目类别: