Biology of RNA G-quadruplexes
RNA G 四链体的生物学
基本信息
- 批准号:10093075
- 负责人:
- 金额:$ 37.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional7-deazaguanineAffectBase PairingBindingBinding ProteinsBiochemicalBiologicalBiological AssayBiological ProcessBiological TestingBiologyBiophysicsCancer BiologyCell physiologyCellsCellular StressCollaborationsDNADataDevelopmentDiseaseElementsEtiologyEukaryotic CellEventFunctional disorderGene ExpressionGenesGenetic TranscriptionGenetic TranslationGoalsGrowthGuanineGuanosineHomeostasisHumanIn VitroInterventionInvestigationIonsLaboratoriesLeadMalignant NeoplasmsMediatingMessenger RNAMetabolismMethodsMolecularMolecular TargetMutationNerve DegenerationNeurodegenerative DisordersNucleic Acid Regulatory SequencesNucleic AcidsPathologicPathologyPathway interactionsPharmacologyPhysiologicalPoly AProcessProteinsProteomicsPublishingRNARNA BindingRNA SequencesRNA metabolismRegulationRegulatory ElementReportingResearchRibonucleic Acid Regulatory SequencesRoleStressStructureSystemTechniquesTestingTherapeuticTranscriptTranslationsWorkbasebiological adaptation to stressbiophysical techniquesgenetic manipulationgenome-wide analysishuman diseasein vivointerestmRNA Stabilitynovelnovel strategiesnovel therapeuticsphysiologic stressorpreventtelomerethree dimensional structuretranscriptometumorigenic
项目摘要
Summary
G-quadruplexes (G4s) are non-canonical secondary structures in nucleic acids that are formed by
guanine-rich sequences. G4 structural and functional studies have largely focused on DNA G4s, and the
number of biological functions assigned to these motifs has grown rapidly since the discovery of their
involvement in telomere biology. RNA G4s (RG4s) are less studied, but interest is increasing due to their
association with multiple processes. A comprehensive understanding of how RNA G4s contribute to cell
physiology and pathophysiology is the long-term research goal of the applicant.
Multiple reports clearly demonstrate that G4s are enriched in mRNA 5’- and 3’-untranslated regulatory
regions. There is an increasing evidence that RG4s control gene expression at transcriptional and post-
transcriptional levels, although such data is largely based on in vitro studies. Testing the biological significance
of RG4s requires proving that RG4s exist in vivo. Intriguingly, RG4s appear predominantly unfolded in
eukaryotic cells, whereas they are readily folded in vitro, suggesting that in cells RG4s are constitutively
recognized and actively unfolded. We hypothesize that RG4 folding-unfolding regulates mRNA homeostasis.
This hypothesis is based on our analysis of human transcriptome that identifies RG4s as stress-responsive
RNA elements. We will test this hypothesis with three specific aims. In AIM1, we will determine and
characterize the fraction of the human transcriptome that contains putative stress-responsive RG4s in living
cells. In AIM2, we will identify bona fide RG4-binding proteins using a novel approach based on
proteomic/biochemical analysis of interactions between the 7-deazaguanine RNA derivatives and proposed
binding factors. In AIM 3, we will use functional assays to determine the biological significance of RG4s in
mRNA stability, localization and translation. We will use biophysical and biochemical methods to validate
selected RG4 candidates. This work will elucidate how RG4-mediated functions contribute to cellular mRNA
homeostasis, and will identify physiologically significant RG4-binding partners, which in turn may reveal
molecular targets and pathways with therapeutic potential.
The understanding of cellular functions of RG4 motifs is particularly relevant to the biology of cancer
and neurodegeneration. RNA regions containing RG4s significantly overlap with regions containing disease-
associated mutations. The proposed studies may elucidate molecular events underlying normal and
pathological aspects of cell physiology, and identify events contributing to the tumorigenic or
neurodegenerative changes.
概括
g四链体(G4S)是核酸中非经典的二级结构,由核酸形成。
鸟嘌呤富含序列。 G4结构和功能研究主要集中在DNA G4上,而
自从发现它们以来,分配给这些主题的生物学功能的数量已迅速增长
RNA G4S(RG4S)的研究较少,但由于它们的兴趣正在增加
与多个过程相关联。对RNA G4如何贡献细胞的全面理解
生理和病理生理学是申请人的长期研究目标。
多个报告清楚地表明,G4富集在mRNA 5'-和3'-非翻译调节中
地区。越来越多的证据表明,RG4S控制转录和后转录的基因表达
转录水平,尽管这些数据主要基于体外研究。测试生物学
RG4需要提供体内RG4。有趣的是,RG4似乎主要展开
真核细胞,而它们很容易在体外折叠,表明在细胞中,RG4始终如一
公认并积极展开。我们假设RG4折叠无折叠可以调节mRNA稳态。
该假设基于我们对人类转录组的分析,该分析将RG4识别为应力响应性
RNA元素。我们将以三个特定的目标检验这一假设。在AIM1中,我们将确定和
表征人类转录组的比例,其中包含推定的应力响应RG4
细胞。在AIM2中,我们将使用基于基于新颖的方法来确定真正的RG4结合蛋白
蛋白质组学/生化分析7-二氮氨酸RNA衍生物和提议之间的相互作用
结合因子。在AIM 3中,我们将使用功能测定来确定RG4在
mRNA稳定性,定位和翻译。我们将使用生物物理和生化方法来验证
选定的RG4候选人。这项工作将阐明RG4介导的功能如何促进细胞mRNA
稳态,并将确定身体上重要的RG4结合伙伴,这可能揭示
具有治疗潜力的分子靶标和途径。
对RG4基序的细胞功能的理解与癌症的生物学特别相关
和神经变性。含有RG4的RNA区域与含有疾病的区域显着重叠
相关突变。拟议的研究可能阐明正常正常和的分子事件
细胞生理学的病理方面,并确定有助于肿瘤性或
神经退行性变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavel Ivanov其他文献
Pavel Ivanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavel Ivanov', 18)}}的其他基金
tRNA-derived stress-induced RNAs and translational control
tRNA 衍生的应激诱导 RNA 和翻译控制
- 批准号:
10709543 - 财政年份:2022
- 资助金额:
$ 37.59万 - 项目类别:
tRNA-derived stress-induced RNAs and translational control
tRNA 衍生的应激诱导 RNA 和翻译控制
- 批准号:
10797061 - 财政年份:2022
- 资助金额:
$ 37.59万 - 项目类别:
G-quadruplex Structures as Targets and Tools in ALS
G-四联体结构作为 ALS 的靶标和工具
- 批准号:
9143821 - 财政年份:2015
- 资助金额:
$ 37.59万 - 项目类别: