Discovery of Gram-negative permeable chemical probes for tRNA methylation
发现用于 tRNA 甲基化的革兰氏阴性渗透性化学探针
基本信息
- 批准号:10092920
- 负责人:
- 金额:$ 68.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismAnti-Bacterial AgentsAntibioticsAnticodonBacteriaBindingBiological AssayCell DeathCell DensityCellsCellular AssayCessation of lifeChemical StructureChemicalsClinicalCodon NucleotidesCollectionCrystallizationDoseDrug Binding SiteDrug EffluxDrug IndustryDrug TargetingDrug resistanceDrug usageEscherichia coliEventExhibitsFluorescenceGene ExpressionGenesGenetic TranscriptionGram-Negative BacteriaGrowthHomo sapiensHumanInfectionInitiator CodonLigand BindingMembraneMembrane ProteinsMessenger RNAMethylationModelingModern MedicineModificationMulti-Drug ResistanceNatural ProductsNoisePermeabilityPharmaceutical ChemistryPharmaceutical PreparationsPhenotypePositioning AttributeProtein BiosynthesisProteinsPseudomonas aeruginosaPublic HealthReading FramesResistanceRibosomesS-AdenosylhomocysteineSalmonellaSalmonella entericaSeriesShapesSideSignal TransductionSiteSpecificityStructureStructure-Activity RelationshipSynthesis ChemistryTestingTherapeutic EffectTimeTransfer RNATransferaseTranslationsanalogantimicrobialantimicrobial drugbactericidebasecell growthchemical propertyclinically relevantdrug discoveryefflux pumpgene discoverygenome-wide analysishigh throughput screeningimprovedin silicoinhibitor/antagonistmembrane activityminimal inhibitory concentrationnovelpathogenpreemptprematureresistance mutationresponsescaffoldscreeningsinefunginsmall moleculesuccess
项目摘要
Project Summary. Gram-negative (Gram (-)) bacteria are intrinsically resistant to drugs, due to a double
membrane structure that acts as a permeability barrier to drugs and as an anchor for efflux pumps. Many Gram
(-) bacteria have developed multi-drug resistance, which poses one of the most pressing issues in modern
medicine. Antibiotics are barred and extruded from cells and cannot reach high enough intracellular
concentrations to exert a therapeutic effect. While efforts have focused on targeting one membrane protein at a
time, resistance mutations can quickly develop. We propose to target the m1G37-tRNA methylation catalyzed
by TrmD to inhibit biosynthesis of multiple membrane proteins simultaneously, thus reducing drug barrier and
efflux and accelerating bactericidal action. TrmD is a bacteria-specific S-adenosyl-methionine (AdoMet)-
dependent methyl transferase that controls accuracy of the protein-synthesis reading frame. Loss of TrmD
increases +1 frameshifts and terminates protein synthesis prematurely. We have discovered that genes for
multiple membrane proteins and efflux pumps in E. coli and other Gram (-) bacteria contain TrmD-dependent
codons near the start of the reading frame. We hypothesize that targeting TrmD will reduce protein synthesis of
all of these genes. By reducing multiple membrane- and efflux-proteins at once, we propose that targeting
TrmD offers a novel solution to an unmet need. While AstraZeneca (AZ) has attempted to target TrmD, the
isolated hits lacked the cell-permeability needed to exhibit an antibacterial effect. We hypothesize that
successful targeting must identify compounds that are cell-permeable and selective for TrmD over the human
counterpart Trm5. To test this hypothesis, we have developed and optimized a cell-based fluorescence assay
for E. coli TrmD (EcTrmD), in which we will mix a 1:1 ratio of an E. coli mCherry (mCh)-expressing strain
dependent on TrmD for survival and a separate YFP-expressing strain dependent on Trm5 for survival to
discover cell-permeable compounds that selectively inhibit the TrmD-dependent but not the Trm5-dependent
strain. In Aim 1, we will use this cell-based assay, which is high-throughput screening (HTS)-ready, in a large-
scale campaign to discover cell-permeable and selective inhibitors of EcTrmD. We will screen a diverse
collection of ~180,000 compounds and a collection of 10,000 natural products to identify inhibitors and remove
false positives. In Aim 2, we will assess hits in secondary assays to determine their potency and mechanism of
action. We will fractionate natural products to active compounds. We will also test hits on Gram (-) bacteria
Salmonella and Pseudomonas aeruginosa. In Aim 3, we will use whole-cell assays to identify hits that inhibit
cell growth and display TrmD-deficient phenotypes. We will assess initial structure-activity relationship (SAR)
of each cluster of hits by analysis of ~20 analogs selected from in silico modeling in our TrmD crystal structure
with a bound tRNA and sinefungin (non-reactive AdoMet analog). These initial hits will serve as powerful
probes in a new paradigm of antibiotic discovery that inhibits the drug barrier and efflux of Gram (-) bacteria.
项目摘要。革兰氏阴(克( - ))细菌本质上对药物具有抗药性,这是由于双重的
膜结构充当药物的渗透性障碍,也是外排泵的锚点。许多克
( - )细菌发展了多药抗性,这在现代中提出了最紧迫的问题之一
药品。抗生素被禁止并挤出细胞,无法达到足够高的细胞内
发挥治疗作用的浓度。努力集中在靶向一个膜蛋白
时间,阻力突变会迅速发展。我们建议靶向M1G37-TRNA甲基化催化
通过TRMD同时抑制多种膜蛋白的生物合成,从而降低了药物屏障和
外排和加速杀菌作用。 TRMD是细菌特异性的S-腺苷甲硫代氨酸(ADOMET) -
控制蛋白质合成阅读框的准确性的依赖甲基转移酶。损失TRMD
增加+1移料器并过早终止蛋白质合成。我们发现了该基因
大肠杆菌和其他克( - )细菌中的多种膜蛋白和外排泵含有TRMD依赖性
密码子接近阅读框的开始。我们假设靶向TRMD将减少
所有这些基因。通过一次减少多种膜和外排 - 蛋白质,我们提出了靶向
TRMD为未满足的需求提供了一种新颖的解决方案。阿斯利康(AZ)试图瞄准TRMD,而
孤立的命中缺乏表现出抗菌作用所需的细胞渗透性。我们假设这一点
成功的靶向必须识别可渗透细胞的化合物,并且对人类的TRMD有选择性
对应物TRM5。为了检验该假设,我们开发并优化了基于细胞的荧光测定法
对于大肠杆菌TRMD(ECTRMD),我们将混合表达大肠杆菌(MCH)的1:1比率
取决于TRMD的生存和单独的表达YFP应变,取决于TRM5的生存
发现有选择地抑制TRMD依赖性但不依赖TRM5的细胞渗透化合物
拉紧。在AIM 1中,我们将使用此基于细胞的测定法,即高通量筛选(HTS) - 在大型中已经准备就绪
比例曲运动,以发现ECTRMD的细胞渗透和选择性抑制剂。我们将筛选多样的
收集了约180,000种化合物和10,000种天然产品,以识别抑制剂并删除
误报。在AIM 2中,我们将评估次要测定的命中率,以确定其效力和机制
行动。我们将对活性化合物分馏。我们还将在克( - )细菌上测试命中
沙门氏菌和铜绿假单胞菌。在AIM 3中,我们将使用全细胞测定法来识别抑制的命中
细胞生长和显示TRMD缺陷的表型。我们将评估初始结构 - 活性关系(SAR)
通过分析在我们的TRMD晶体结构中选择的〜20个类似物的分析,通过分析〜20个类似物的分析
具有结合的tRNA和SinineFungin(非反应性ADOMET类似物)。这些最初的命中将是强大的
在新的抗生素发现范式中的探针抑制了克( - )细菌的药物屏障和外排。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ya-Ming Hou其他文献
Ya-Ming Hou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ya-Ming Hou', 18)}}的其他基金
A cell model of YARS2-associated childhood-onset mitochondrial disease
YARS2 相关的儿童期发病线粒体疾病的细胞模型
- 批准号:
10575369 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
- 批准号:
10307014 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
- 批准号:
10625857 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
- 批准号:
10438880 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
Exploring 3Dpol for RNA sequencing in real time
探索 3Dpol 实时 RNA 测序
- 批准号:
10166895 - 财政年份:2020
- 资助金额:
$ 68.42万 - 项目类别:
Exploring 3Dpol for RNA sequencing in real time
探索 3Dpol 实时 RNA 测序
- 批准号:
9974889 - 财政年份:2020
- 资助金额:
$ 68.42万 - 项目类别:
相似国自然基金
线粒体mRNA甲基化修饰调控神经元线粒体能量代谢的机制研究
- 批准号:32300796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
- 批准号:82301707
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以22q11.21重复变异的孤独症谱系障碍病人为模型研究THAP7调节血清素代谢的分子机制
- 批准号:32300488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
相似海外基金
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
- 批准号:
10742028 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Optimization of Atypical Antimycobacterial Carbapenem Antibiotics
非典型抗分枝杆菌碳青霉烯类抗生素的优化
- 批准号:
10736024 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
EPHEDRA: Enhanced PHthisic by Environmental Disruptors of Resolution Agonists
麻黄:通过消解激动剂的环境干扰剂增强肺结核
- 批准号:
10662073 - 财政年份:2022
- 资助金额:
$ 68.42万 - 项目类别:
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
- 批准号:
10546657 - 财政年份:2022
- 资助金额:
$ 68.42万 - 项目类别:
Antagonistic relationships among Acinetobacter isolates
不动杆菌分离株之间的拮抗关系
- 批准号:
10604520 - 财政年份:2022
- 资助金额:
$ 68.42万 - 项目类别: