Discovery of Gram-negative permeable chemical probes for tRNA methylation
发现用于 tRNA 甲基化的革兰氏阴性渗透性化学探针
基本信息
- 批准号:10092920
- 负责人:
- 金额:$ 68.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismAnti-Bacterial AgentsAntibioticsAnticodonBacteriaBindingBiological AssayCell DeathCell DensityCellsCellular AssayCessation of lifeChemical StructureChemicalsClinicalCodon NucleotidesCollectionCrystallizationDoseDrug Binding SiteDrug EffluxDrug IndustryDrug TargetingDrug resistanceDrug usageEscherichia coliEventExhibitsFluorescenceGene ExpressionGenesGenetic TranscriptionGram-Negative BacteriaGrowthHomo sapiensHumanInfectionInitiator CodonLigand BindingMembraneMembrane ProteinsMessenger RNAMethylationModelingModern MedicineModificationMulti-Drug ResistanceNatural ProductsNoisePermeabilityPharmaceutical ChemistryPharmaceutical PreparationsPhenotypePositioning AttributeProtein BiosynthesisProteinsPseudomonas aeruginosaPublic HealthReading FramesResistanceRibosomesS-AdenosylhomocysteineSalmonellaSalmonella entericaSeriesShapesSideSignal TransductionSiteSpecificityStructureStructure-Activity RelationshipSynthesis ChemistryTestingTherapeutic EffectTimeTransfer RNATransferaseTranslationsanalogantimicrobialantimicrobial drugbactericidebasecell growthchemical propertyclinically relevantdrug discoveryefflux pumpgene discoverygenome-wide analysishigh throughput screeningimprovedin silicoinhibitor/antagonistmembrane activityminimal inhibitory concentrationnovelpathogenpreemptprematureresistance mutationresponsescaffoldscreeningsinefunginsmall moleculesuccess
项目摘要
Project Summary. Gram-negative (Gram (-)) bacteria are intrinsically resistant to drugs, due to a double
membrane structure that acts as a permeability barrier to drugs and as an anchor for efflux pumps. Many Gram
(-) bacteria have developed multi-drug resistance, which poses one of the most pressing issues in modern
medicine. Antibiotics are barred and extruded from cells and cannot reach high enough intracellular
concentrations to exert a therapeutic effect. While efforts have focused on targeting one membrane protein at a
time, resistance mutations can quickly develop. We propose to target the m1G37-tRNA methylation catalyzed
by TrmD to inhibit biosynthesis of multiple membrane proteins simultaneously, thus reducing drug barrier and
efflux and accelerating bactericidal action. TrmD is a bacteria-specific S-adenosyl-methionine (AdoMet)-
dependent methyl transferase that controls accuracy of the protein-synthesis reading frame. Loss of TrmD
increases +1 frameshifts and terminates protein synthesis prematurely. We have discovered that genes for
multiple membrane proteins and efflux pumps in E. coli and other Gram (-) bacteria contain TrmD-dependent
codons near the start of the reading frame. We hypothesize that targeting TrmD will reduce protein synthesis of
all of these genes. By reducing multiple membrane- and efflux-proteins at once, we propose that targeting
TrmD offers a novel solution to an unmet need. While AstraZeneca (AZ) has attempted to target TrmD, the
isolated hits lacked the cell-permeability needed to exhibit an antibacterial effect. We hypothesize that
successful targeting must identify compounds that are cell-permeable and selective for TrmD over the human
counterpart Trm5. To test this hypothesis, we have developed and optimized a cell-based fluorescence assay
for E. coli TrmD (EcTrmD), in which we will mix a 1:1 ratio of an E. coli mCherry (mCh)-expressing strain
dependent on TrmD for survival and a separate YFP-expressing strain dependent on Trm5 for survival to
discover cell-permeable compounds that selectively inhibit the TrmD-dependent but not the Trm5-dependent
strain. In Aim 1, we will use this cell-based assay, which is high-throughput screening (HTS)-ready, in a large-
scale campaign to discover cell-permeable and selective inhibitors of EcTrmD. We will screen a diverse
collection of ~180,000 compounds and a collection of 10,000 natural products to identify inhibitors and remove
false positives. In Aim 2, we will assess hits in secondary assays to determine their potency and mechanism of
action. We will fractionate natural products to active compounds. We will also test hits on Gram (-) bacteria
Salmonella and Pseudomonas aeruginosa. In Aim 3, we will use whole-cell assays to identify hits that inhibit
cell growth and display TrmD-deficient phenotypes. We will assess initial structure-activity relationship (SAR)
of each cluster of hits by analysis of ~20 analogs selected from in silico modeling in our TrmD crystal structure
with a bound tRNA and sinefungin (non-reactive AdoMet analog). These initial hits will serve as powerful
probes in a new paradigm of antibiotic discovery that inhibits the drug barrier and efflux of Gram (-) bacteria.
项目摘要。革兰氏阴性 (Gram (-)) 细菌本质上对药物具有耐药性,这是由于双重
膜结构,充当药物的渗透屏障和外排泵的锚。许多克
(-) 细菌已经产生了多重耐药性,这是现代社会最紧迫的问题之一
药品。抗生素被细胞阻挡和挤出,无法到达细胞内足够高的位置
浓度才能发挥治疗作用。虽然工作重点是针对一种膜蛋白
随着时间的推移,耐药性突变会迅速发展。我们建议靶向 m1G37-tRNA 甲基化催化
通过TrmD同时抑制多种膜蛋白的生物合成,从而降低药物屏障和
外排并加速杀菌作用。 TrmD 是一种细菌特异性 S-腺苷甲硫氨酸 (AdoMet)-
控制蛋白质合成阅读框准确性的依赖甲基转移酶。 TrmD 丢失
增加+1移码并过早终止蛋白质合成。我们发现基因
大肠杆菌和其他革兰氏 (-) 细菌中的多种膜蛋白和外排泵含有 TrmD 依赖性
靠近阅读框起点的密码子。我们假设靶向 TrmD 将减少
所有这些基因。通过同时减少多种膜蛋白和外排蛋白,我们建议靶向
TrmD 为未满足的需求提供了新颖的解决方案。虽然阿斯利康 (AZ) 试图瞄准 TrmD,但
孤立的命中缺乏表现出抗菌作用所需的细胞渗透性。我们假设
成功的靶向必须识别出具有细胞渗透性且对 TrmD 的选择性高于人类的化合物
对应的Trm5。为了检验这一假设,我们开发并优化了基于细胞的荧光测定
对于大肠杆菌 TrmD (EcTrmD),我们将以 1:1 的比例混合表达大肠杆菌 mCherry (mCh) 的菌株
依赖于 TrmD 生存,而单独的表达 YFP 的菌株则依赖于 Trm5 生存
发现可选择性抑制 TrmD 依赖性而非 Trm5 依赖性的细胞渗透性化合物
拉紧。在目标 1 中,我们将在大规模实验中使用这种基于细胞的检测方法,该检测方法已做好高通量筛选 (HTS) 准备。
大规模活动以发现 EcTrmD 的细胞渗透性和选择性抑制剂。我们将筛选多元化的
收集约 180,000 种化合物和 10,000 种天然产物,用于识别抑制剂并去除
误报。在目标 2 中,我们将评估二次测定中的命中,以确定它们的效力和机制
行动。我们将天然产物分馏为活性化合物。我们还将测试对革兰氏 (-) 细菌的命中
沙门氏菌和铜绿假单胞菌。在目标 3 中,我们将使用全细胞分析来识别抑制的命中
细胞生长并表现出 TrmD 缺陷表型。我们将评估初始构效关系 (SAR)
通过分析从我们的 TrmD 晶体结构中的计算机建模中选择的约 20 个类似物来分析每个命中簇
与结合的 tRNA 和 sinefungin(非反应性 AdoMet 类似物)。这些最初的打击将发挥强大的作用
探索抗生素发现的新范式,抑制革兰氏 (-) 细菌的药物屏障和外流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ya-Ming Hou其他文献
Ya-Ming Hou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ya-Ming Hou', 18)}}的其他基金
A cell model of YARS2-associated childhood-onset mitochondrial disease
YARS2 相关的儿童期发病线粒体疾病的细胞模型
- 批准号:
10575369 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
- 批准号:
10307014 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
- 批准号:
10625857 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
- 批准号:
10438880 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
Exploring 3Dpol for RNA sequencing in real time
探索 3Dpol 实时 RNA 测序
- 批准号:
10166895 - 财政年份:2020
- 资助金额:
$ 68.42万 - 项目类别:
Exploring 3Dpol for RNA sequencing in real time
探索 3Dpol 实时 RNA 测序
- 批准号:
9974889 - 财政年份:2020
- 资助金额:
$ 68.42万 - 项目类别:
相似国自然基金
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
可代谢调控弱碱性钠盐纳米材料的控制合成及其在增强癌症免疫治疗中的应用
- 批准号:52372273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥UBC34通过介导ABA的合成与代谢调控盐胁迫应答的机制研究
- 批准号:32300248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
葡萄糖神经酰胺合成酶GCS调控植物磷代谢的分子机制研究
- 批准号:32300234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
- 批准号:
10742028 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Optimization of Atypical Antimycobacterial Carbapenem Antibiotics
非典型抗分枝杆菌碳青霉烯类抗生素的优化
- 批准号:
10736024 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
EPHEDRA: Enhanced PHthisic by Environmental Disruptors of Resolution Agonists
麻黄:通过消解激动剂的环境干扰剂增强肺结核
- 批准号:
10662073 - 财政年份:2022
- 资助金额:
$ 68.42万 - 项目类别:
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
- 批准号:
10546657 - 财政年份:2022
- 资助金额:
$ 68.42万 - 项目类别:
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
- 批准号:
10657805 - 财政年份:2022
- 资助金额:
$ 68.42万 - 项目类别: