PPARG-dependent Mechanisms Control Endothelial-Smooth Muscle Coordination, Arterial Pressure, Vasomotor Function and Arterial Stiffness
PPARG 依赖性机制控制内皮-平滑肌协调、动脉压、血管舒缩功能和动脉僵硬度
基本信息
- 批准号:10092211
- 负责人:
- 金额:$ 92.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-06 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntioxidantsBindingBiological AvailabilityBlood PressureBlood VesselsComplexContractsCyclic GMPDataDiseaseDisease modelEndotheliumFutureGenetic TranscriptionHypertensionInvestigationMediatingMediator of activation proteinModelingMolecularMolecular TargetNitric OxideNitric Oxide PathwayNuclear ReceptorsOxidation-ReductionPPAR gammaPPARG genePathway interactionsPhenotypePhysiologicalPlayPost-Translational RegulationProductionProteomicsRXRRegulationResearchRetinol Binding ProteinsRho-associated kinaseRoleSignal TransductionSmooth MuscleStructureTherapeuticVascular DiseasesVascular Smooth MuscleVasoconstrictor AgentsVasodilationVasodilator AgentsVasomotorVisionarterial stiffnessblood pressure regulationcell typechromatin immunoprecipitationcomorbidityconstrictioncullin-3genome-widenovelphosphodiesterase Vpressureprogramsprotein degradationresponsesensortranscription factortranscriptomeubiquitin-protein ligase
项目摘要
Summary/Abstract
Blood vessels play an important role in the regulation of arterial blood pressure (BP). Precise BP regulation
requires coordination between vasodilator and vasoconstrictor signals in the endothelium (EC) and smooth
muscle (SMC). EC-derived nitric oxide (NO) is among the key signals which instruct the SMC to dilate or
contract. Our studies show that the NO pathway is coordinately regulated through transcriptional and post-
translational pathways initiated by PPARγ, a nuclear receptor transcription factor. Our data support the
concepts that PPARγ: 1) acts as a sensor in EC to regulate redox state, and through this, bioavailability of NO,
and 2) regulates the responsiveness of SMC to NO by independently controlling a) a RhoA/Rho kinase
(ROCK) activity that promotes constriction, and b) production and stability of cyclic GMP (cGMP), a critical
mediator of vasodilation. The range of PPARγ-dependent molecular mechanisms in both cell types is
surprisingly complex; requiring novel transcriptional co-factors (e.g. retinol binding protein 7; RBP7) which form
a transcriptional regulatory hub with PPARγ, and post-translational regulation of critical SMC mediators (RhoA
and phosphodiesterase 5, PDE5) by Cullin-3 E3 ubiquitin ligase-mediated protein turnover. Importantly, this
PPARγ initiated “final common pathway” has profound effects on vasomotor function, BP and vascular
stiffness, and the studies proposed herein have potential implications for the treatment of these disorders.
However, the signals which initiate and mediate these responses and the range of molecular targets remain
poorly understood. This proposal will focus on two distinct PPARγ-regulated pathways. We will examine the
PPARγ-RhoBTB1-Cullin-3 pathway in smooth muscle and will 1) determine if the RhoBTB1-Cullin-3 pathway
can be exploited as a potential future therapeutic by assessing if RhoBTB1 can protect and reverse
phenotypes in models of hypertension or in other disease models in which vascular dysfunction is a
comorbidity, 2) determine if RhoBTB1 is important in other cells types including endothelium, and 3) employ a
proteomic strategy to identify novel RhoBTB1 binding partners and Cullin-3 substrates in vascular smooth
muscle. We will also examine the PPARγ-RBP7-anti-oxidant pathway in endothelium and will perform 1)
structure function analysis to identify key mechanisms regulating PPARγ transcriptional activity by RBP7, and
2) genome wide transcriptome and chromatin immunoprecipitation studies to assess the contribution of RBP7
to mediated transcriptional activity of PPARγ and its obligate heterodimer RXR. This program will lead to new
concepts and directions of investigation for the field and will not only deepen our understanding of the role of
two fundamentally important pathways in the vasculature, but will also address fundamental transcriptional and
post-translational mechanisms that are of relevance in many cell types.
摘要/摘要
血管在调节动脉血压(BP)中起着重要作用。精确的BP调节
需要在内皮(EC)中的血管扩张器和血管收缩信号之间的协调
肌肉(SMC)。 EC衍生的一氧化氮(NO)是指示SMC扩张或
合同。我们的研究表明,NO途径通过转录和后的转录和
PPARγ引发的翻译途径是核接收器转录因子。我们的数据支持
PPARγ的概念:1)在EC中充当调节氧化还原状态的传感器,通过此,NO的生物利用度,
2)通过独立控制A)RhoA/Rho激酶来调节SMC对NO的响应能力
(岩石)促进收缩的活动,b)环状GMP(CGMP)的产生和稳定性,这是一个关键
血管舒张的介体。两种细胞类型中PPARγ依赖性分子机制的范围是
令人惊讶的复杂;需要新型的转录副因素(例如视黄醇结合蛋白7; rbp7)
带有PPARγ的转录调节枢纽和关键SMC介质的翻译后调节(RhoA
和磷酸二酯酶5,PDE5),由Cullin-3 E3泛素连接酶介导的蛋白质更新。重要的是,这个
PPARγ引发的“最终公共途径”对血管舒缩功能,BP和血管具有深远的影响
僵硬,本文提出的研究对这些疾病的治疗具有潜在的影响。
但是,启动和介导这些响应的信号,分子靶标的范围仍然存在
理解不佳。该建议将集中于两种不同的PPARγ调节途径。我们将检查
PPARγ-RHOBTB1-CULLIN-3平滑肌中的途径,并将确定Rhobtb1-Cullin-3途径是否
可以通过评估Rhobtb1是否可以保护和逆转来探索作为未来疗法
高血压模型或其他血管功能障碍的表型是一种
合并症,2)确定Rhobtb1在包括内皮在内的其他细胞类型中是否重要,3)员工A
蛋白质组学策略以识别新型RhoBTB1结合伙伴和血管平滑中的Cullin-3底物
肌肉。我们还将检查内皮中的PPARγ-RBP7-抗氧化途径,并将执行1)
结构函数分析以识别RBP7调节PPARγ转录活性的关键机制,
2)基因组广泛的转录组和染色质免疫沉淀研究,以评估RBP7的贡献
介导PPARγ及其强制性异二聚体RXR的转录活性。该程序将导致新的
该领域的概念和投资方向,不仅会加深我们对
脉管系统中的两种根本重要的途径,但也将解决基本的转录和
在许多细胞类型中相关的翻译后机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Curt Daniel Sigmund其他文献
Curt Daniel Sigmund的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Curt Daniel Sigmund', 18)}}的其他基金
PPARG-dependent Mechanisms Control Endothelial-Smooth Muscle Coordination, Arterial Pressure, Vasomotor Function and Arterial Stiffness
PPARG 依赖性机制控制内皮-平滑肌协调、动脉压、血管舒缩功能和动脉僵硬度
- 批准号:
10337230 - 财政年份:2019
- 资助金额:
$ 92.4万 - 项目类别:
PPARG-dependent Mechanisms Control Endothelial-Smooth Muscle Coordination, Arterial Pressure, Vasomotor Function and Arterial Stiffness
PPARG 依赖性机制控制内皮-平滑肌协调、动脉压、血管舒缩功能和动脉僵硬度
- 批准号:
10565914 - 财政年份:2019
- 资助金额:
$ 92.4万 - 项目类别:
PPG-Genetic and Signaling Mechanisms in the Central Regulation of Blood Pressure
PPG-血压中枢调节的遗传和信号机制
- 批准号:
9278663 - 财政年份:2016
- 资助金额:
$ 92.4万 - 项目类别:
Role of PPARG the PPARG Target Gene RBP7 in the Endothelium
PPARG 的作用 PPARG 靶基因 RBP7 在内皮细胞中的作用
- 批准号:
9249635 - 财政年份:2016
- 资助金额:
$ 92.4万 - 项目类别:
Hypertension: Role of Smooth Muscle Cullin-3 and the CRL3 Complex
高血压:平滑肌 Cullin-3 和 CRL3 复合体的作用
- 批准号:
8956718 - 财政年份:2015
- 资助金额:
$ 92.4万 - 项目类别:
Novel Mechanism Regulating RAS Activity in the Brain: Role in Neurogenic Hypertension
调节大脑 RAS 活性的新机制:在神经源性高血压中的作用
- 批准号:
10213809 - 财政年份:2007
- 资助金额:
$ 92.4万 - 项目类别:
PPG-Genetic and Signaling Mechanisms in the Central Regulation of Blood Pressure
PPG-血压中枢调节的遗传和信号机制
- 批准号:
7433915 - 财政年份:2007
- 资助金额:
$ 92.4万 - 项目类别:
Role of the brain Renin-Angiotensin Sys. in Cardiovas and Metabolic Regulation
大脑肾素-血管紧张素系统的作用。
- 批准号:
8651937 - 财政年份:2007
- 资助金额:
$ 92.4万 - 项目类别:
Genetic and Signaling Mechanisms in the Central Regulation of Blood
血液中枢调节的遗传和信号机制
- 批准号:
9977790 - 财政年份:2007
- 资助金额:
$ 92.4万 - 项目类别:
相似国自然基金
抗氧化剂/活性离子时序释放复合支架构建及其修复糖尿病骨缺损的机制研究
- 批准号:32360232
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
塑料抗氧化剂内分泌干扰转化产物的识别与环境行为研究
- 批准号:22306042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
农用地膜抗氧化剂的土壤污染特征及其微生物效应与机制研究
- 批准号:42377223
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
自然水体轮胎抗氧化剂高毒醌类衍生物非靶向识别及生物转化机制
- 批准号:42377360
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
取代对苯二胺抗氧化剂及其醌衍生物的人体内暴露标志物研究
- 批准号:22306031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Biology the initiator: Harnessing Reactive Oxygen Species for Biocompatible Polymerization
生物学引发者:利用活性氧进行生物相容性聚合
- 批准号:
10667740 - 财政年份:2023
- 资助金额:
$ 92.4万 - 项目类别:
Role of mitochondrial GDAP1 in Alzheimer's disease
线粒体 GDAP1 在阿尔茨海默病中的作用
- 批准号:
10739858 - 财政年份:2023
- 资助金额:
$ 92.4万 - 项目类别:
Zinc Protection Against Ischemia-Reperfusion Injury in Heart
锌可预防心脏缺血再灌注损伤
- 批准号:
10652915 - 财政年份:2023
- 资助金额:
$ 92.4万 - 项目类别:
Mitoquinone/mitoquinol mesylate as oral and safe Postexposure Prophylaxis for Covid-19
米托醌/甲磺酸米托喹诺作为 Covid-19 的口服且安全的暴露后预防
- 批准号:
10727092 - 财政年份:2023
- 资助金额:
$ 92.4万 - 项目类别:
Pentagalloyl glucose as an inhibitor of monosodium urate induced inflammation
五没食子酰葡萄糖作为尿酸钠诱导炎症的抑制剂
- 批准号:
10535379 - 财政年份:2023
- 资助金额:
$ 92.4万 - 项目类别: