Ion Transport in Alveolar Type I Cells
I 型肺泡细胞中的离子传输
基本信息
- 批准号:7599513
- 负责人:
- 金额:$ 9.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active Ion TransportAcute Lung InjuryAcute PneumoniaAddressAdenosineAdultAdult Respiratory Distress SyndromeAffectAgonistAlveolarAlveolar Cell Type IAmilorideAnionsApicalAreaBiochemicalCardiovascular systemCarrier ProteinsCellsCommitCommunitiesCyclic AMPCyclic NucleotidesCystic Fibrosis Transmembrane Conductance RegulatorDataDevelopment PlansDiseaseEnvironmentEpithelialEpithelial CellsEpitheliumFailureFloodsFluid BalanceFutureGasesGlucocorticoidsGoalsHomeostasisHumanIon ChannelIon TransportIonsKidneyLiquid substanceLungMeasuresMediatingMedicineModalityMolecularMovementNa(+)-K(+)-Exchanging ATPaseNitric OxidePathway interactionsPhysiciansPlayProductionPublishingPulmonary EdemaPulmonary alveolar structurePulmonologyRattusRegulationReportingResearchResearch InstituteResearch PersonnelResourcesRoleRouteScientistSensorySiteSurfaceTechniquesTrainingType I Epithelial Receptor CellType II Epithelial Receptor CellUbiquitinWaterWorkabsorptionalveolar epitheliumcareercareer developmentcell typecyclic-nucleotide gated ion channelsdesigndriving forceepithelial Na+ channelinhibitor/antagonistinsightmulticatalytic endopeptidase complexnovelpatch clamppreventprogramsresearch studysolutetheoriestherapeutic developmenttherapy developmentuptakewater channel
项目摘要
DESCRIPTION (provided by applicant): Fluid balance in the lung is critical to survival. One million people are hospitalized each year for pneumonia, acute lung injury, or acute respiratory distress syndrome, diseases which compromise oxygenation from the failure of gas exchange in the lungs due to alveolar flooding. Alveolar fluid clearance is driven by active ion transport across the alveolar epithelium, composed of type I cells, which cover > 95% of the internal surface area of the lung, and type II cells, which line ~5%. The generally accepted theory of ion and fluid transport in the lung is that type II cells, known to contain ion transport proteins, govern alveolar fluid balance by
regulating Na+ transport, while type I cells, which contain water channels, merely provide a route for passive
water absorption. However, the extensive alveolar surface area occupied by type I cells suggests that these
cells may play a larger role in regulating lung fluid balance. Our preliminary data demonstrate that there are
functional ion channels in type I cells, and that there are significant differences in how Na+ and Cl- transport
are regulated in type I and type II cells. The underlying hypotheses for the studies in this application are that
ion transport in type I and type II cells is regulated in part by different mechanisms and that the effects of
agents that modulate alveolar fluid clearance in whole lungs are better explained by the effects of these
agents on type I, rather than type II, cells. Specific Aim 1 will determine regulatory mechanisms of Na+
transport in type I cells by studying modulation of ENaC and Na+-, K+-ATPase. Specific Aim 2 will explore
mechanisms of amiloride-insensitive Na+ transport in type I cells. Specific Aim 3 willstudy anion transport in
type I cells and determine the roles of adenosine and beta-agonists on Cl- flux regulation. Elucidating the
mechanisms of lung fluid homeostasis will be invaluable in developing strategies to treat alveolar flooding, as
such therapies do not currently exist. The UCSF Department of Medicine and the Cardiovascular Research
Institute provide ideal settings for training physician-scientists, combining multiple resources and a scientific
community that is committed and excited about training future academic researchers. This proposal will
develop expertise in ion transport in alveolar type I cells with the ultimate objective of clarifying how the lungs
regulate lung fluid balance. The research and career development plan will aid in the candidate's goal to
become an independent investigator with an academic career in Pulmonary Medicine.
描述(由申请人提供):肺内的液体平衡对于生存至关重要。每年有一百万人因肺炎、急性肺损伤或急性呼吸窘迫综合征而住院,这些疾病会因肺泡充盈导致肺部气体交换失败而损害氧合。肺泡液清除是由跨肺泡上皮的活性离子传输驱动的,肺泡上皮由 I 型细胞和 II 型细胞组成,I 型细胞覆盖肺内表面积的 95% 以上,而 II 型细胞则覆盖约 5%。肺中离子和液体运输的普遍接受的理论是,已知含有离子运输蛋白的 II 型细胞通过以下方式控制肺泡液体平衡:
调节Na+运输,而含有水通道的I型细胞仅提供被动的途径
吸水率。然而,I 型细胞占据的广泛肺泡表面积表明这些
细胞可能在调节肺液平衡方面发挥更大的作用。我们的初步数据表明,有
I 型细胞中的功能性离子通道,Na+ 和 Cl- 的转运方式存在显着差异
在 I 型和 II 型细胞中受到调节。本申请研究的基本假设是
I 型和 II 型细胞中的离子转运部分受到不同机制的调节,并且
调节整个肺部肺泡液清除率的药物可以通过这些药物的作用得到更好的解释
药物作用于 I 型细胞,而不是 II 型细胞。具体目标 1 将确定 Na+ 的调节机制
通过研究 ENaC 和 Na+-、K+-ATPase 的调节来实现 I 型细胞的转运。具体目标2将探讨
I 型细胞中阿米洛利不敏感的 Na+ 转运机制。具体目标 3 将研究阴离子转运
I 型细胞并确定腺苷和β-激动剂对 Cl-通量调节的作用。阐明
肺液稳态机制对于制定治疗肺泡溢流的策略将具有无价的价值,因为
目前尚不存在此类疗法。加州大学旧金山分校医学与心血管研究系
研究所为培训医师科学家提供了理想的环境,结合了多种资源和科学
致力于并热衷于培训未来学术研究人员的社区。该提案将
发展 I 型肺泡细胞离子转运方面的专业知识,最终目标是阐明肺如何
调节肺液平衡。研究和职业发展计划将有助于候选人实现以下目标:
成为一名独立研究者,从事肺科医学的学术生涯。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LPS-stimulated cytokine production in type I cells is modulated by the renin-angiotensin system.
I 型细胞中 LPS 刺激的细胞因子产生受到肾素-血管紧张素系统的调节。
- DOI:10.1165/rcmb.2011-0289oc
- 发表时间:2012-12-14
- 期刊:
- 影响因子:6.4
- 作者:M;i Wong;i;Olivia C Chapin;Meshell D. Johnson
- 通讯作者:Meshell D. Johnson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MESHELL JOHNSON其他文献
MESHELL JOHNSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MESHELL JOHNSON', 18)}}的其他基金
相似国自然基金
免疫反应基因1(IRG1)在急性肺损伤中的作用及其转录调控机制研究
- 批准号:82300103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TRPV2-AMPK-PKM2信号轴介导的巨噬细胞能量代谢重编程在衰老后肠缺血再灌注所致急性肺损伤中的作用及机制
- 批准号:82372201
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Galectin-1抑制肺泡巨噬细胞线粒体损伤介导的NLRP3活化减轻流感致急性肺损伤的机制研究
- 批准号:82300005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ANXA3调控肺微血管内皮细胞通透性在脓毒症急性肺损伤中的作用及机制研究
- 批准号:82372180
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PDHA1介导中性粒细胞NETosis在急性肺损伤中的作用及机制研究
- 批准号:82370086
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Molecular regulation of immunoproteasome assembly in inflammatory diseases
炎症性疾病中免疫蛋白酶体组装的分子调控
- 批准号:
10637422 - 财政年份:2023
- 资助金额:
$ 9.53万 - 项目类别:
Probing immunovascular mechanobiology in pneumonia-associated acute lung injury at the single capillary level
在单毛细血管水平探讨肺炎相关急性肺损伤的免疫血管力学生物学
- 批准号:
10679944 - 财政年份:2023
- 资助金额:
$ 9.53万 - 项目类别:
Early detection and identification of ventilator associated pneumonia
呼吸机相关性肺炎的早期发现和识别
- 批准号:
10663534 - 财政年份:2023
- 资助金额:
$ 9.53万 - 项目类别:
Mechanism and targeting of inflammasome activation in lung inflammation and injury
肺部炎症和损伤中炎症小体激活的机制和靶向
- 批准号:
10657193 - 财政年份:2023
- 资助金额:
$ 9.53万 - 项目类别:
Lung epithelial cell-derived C3 in acute lung injury
肺上皮细胞衍生的 C3 在急性肺损伤中的作用
- 批准号:
10720687 - 财政年份:2023
- 资助金额:
$ 9.53万 - 项目类别: