Targeting Metabolic Liabilities in Cancer
针对癌症的代谢负担
基本信息
- 批准号:10079472
- 负责人:
- 金额:$ 39.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAnimal ModelAntioxidantsAreaAutomobile DrivingBioenergeticsBiomassBreast Cancer ModelBreast Cancer cell lineBreast cancer metastasisCell DeathCell SurvivalCellsCessation of lifeCritical PathwaysDNA DamageDNA Double Strand BreakDNA RepairDNA Replication InductionDNA Replication InhibitionDNA biosynthesisDNA replication forkDNA replication originDataDefectDependenceEnvironmentEnzymesEssential GenesFutureGenesGenetic ScreeningGlucoseGlutathioneGoalsGrantHumanIn VitroIndividualIronIron OverloadLeadLungLung AdenocarcinomaLung NeoplasmsMaintenanceMalignant NeoplasmsMalignant neoplasm of ovaryMetabolicMetabolic PathwayMetabolismMetastatic Neoplasm to the LungModelingMolecularNormal tissue morphologyOncogene ActivationOxidantsOxidative StressOxygenPathway interactionsPharmaceutical PreparationsPhenotypePlayProcessProteinsRNA InterferenceReactionRoleSerineSerousStarvationStressSulfurWorkXenograft ModelXenograft procedurebasebreast cancer genomicscancer cellcancer subtypescancer survivalcancer therapycell transformationcofactordriving forceexperimental studygenome integrityin vivoinhibitor/antagonistiron metabolismmalignant breast neoplasmoxidative damagerepairedresponsetriple-negative invasive breast carcinomatumortumor metabolismtumor microenvironmenttumor xenografttumorigenesis
项目摘要
Summary/Abstract
In transformed cells the demand to accumulate biomass requires substantial metabolic pathway alteration.
Understanding this altered metabolism will enable identification of liabilities that can be exploited for cancer
therapy. In prior work, we found that hyperoxic stress is a considerable force driving metabolic pathway
dependence in breast cancer. Indeed, the enzyme most differentially required in high versus low oxygen
environments, NFS1, is required for breast cancer metastasis to the lung. Moreover, NFS1 lies in an amplified
region under positive selection in lung adenocarcinoma. Therefore, from prior work we conclude that the high
oxygen environment of the lung is a key metabolic factor to which incipient breast metastases and lung tumors
uniquely adapt, in part, via NFS1. Ours is the first work to describe a role for this critical pathway in cancer.
The purpose of this grant is to gain mechanistic understanding of the NFS1 requirement, focusing on basal-
like breast cancer (BLBC). NFS1 is a key enzyme in the biosynthesis of iron-sulfur clusters (ISC), essential
cofactors in 48 proteins in humans. We found that BLBC cell lines are strikingly more sensitive than luminal
lines to suppression of NFS1. We propose to identify the mechanistic underpinnings of this observation, and
extend our findings to other cancer subtypes. We will suppress ISC containing proteins in a panel of breast
cancer cell lines and verify which are differentially required in BLBC. Validated targets will be inhibited in
xenograft-based models of breast cancer and metastasis to assess their impact on these processes.
Many ISC containing genes are involved in the maintenance of genomic integrity. Our preliminary work
reveals that NFS1 suppression results in the formation of double strand DNA breaks. These observations led
us to suppress POLE, a key genomic integrity enzyme. Interestingly, suppression of POLE also blocks
proliferation and induces double strand breaks in BLBC cell lines far more than luminal lines. Prior work has
indicated that BLBC has defects in aspects of DNA repair that may sensitize them to therapy. Therefore we will
suppress POLE and assess the impact on DNA replication, origin firing, replication fork stalling and restarting,
and the repair of damaged replication forks. These experiments will contribute to our fundamental
understanding of the sensitivity of BLBC to inhibition of DNA replication and induction of DNA damage.
Finally, NFS1 suppression sensitizes cells to oxidative damage via a non-apoptotic form of cell death
termed ferroptosis. Our findings lead to the intriguing possibility that activation of the iron-starvation response
in iron-replete conditions, thereby tricking cancer cells into taking up excess iron, will render them highly
susceptible to further oxidative stress and death by ferroptosis. By mechanistically understanding how best to
activate the iron-starvation response downstream of NFS1, we anticipate that we will gain the benefit of
inducing increased sensitivity to oxidants without having to target a generally cell-essential pathway.
摘要/摘要
在转化细胞中,积累生物量的需求需要大量的代谢途径改变。
了解这种新陈代谢的改变将有助于识别可用于治疗癌症的因素
治疗。在之前的工作中,我们发现高氧应激是驱动代谢途径的重要力量
乳腺癌的依赖性。事实上,高氧和低氧环境下所需的酶差异最大
NFS1 是乳腺癌转移至肺部所必需的环境。此外,NFS1 存在于一个放大的
肺腺癌中正选择区域。因此,根据之前的工作,我们得出的结论是,高
肺的氧环境是早期乳腺转移和肺部肿瘤的关键代谢因素
部分通过 NFS1 进行独特的适应。我们的工作是第一篇描述这一关键途径在癌症中的作用的工作。
这笔赠款的目的是获得对 NFS1 要求的机械理解,重点是基础
如乳腺癌(BLBC)。 NFS1 是铁硫簇 (ISC) 生物合成中的关键酶,对于铁硫簇 (ISC) 至关重要
人类 48 种蛋白质的辅因子。我们发现 BLBC 细胞系比 Luminal 细胞系更加敏感
线抑制 NFS1。我们建议确定这一观察的机制基础,并且
将我们的发现扩展到其他癌症亚型。我们将抑制一组乳房中含有蛋白质的 ISC
癌细胞系并验证 BLBC 中所需的差异。已验证的目标将被抑制
基于异种移植的乳腺癌和转移模型,以评估它们对这些过程的影响。
许多含有 ISC 的基因参与基因组完整性的维护。我们的前期工作
揭示 NFS1 抑制导致双链 DNA 断裂的形成。这些观察导致
我们来抑制 POLE,一种关键的基因组完整性酶。有趣的是,抑制 POLE 也会阻止
BLBC 细胞系中的增殖和诱导双链断裂的程度远高于 luminal 细胞系。之前的工作有
表明 BLBC 在 DNA 修复方面存在缺陷,这可能会使他们对治疗敏感。因此我们将
抑制 POLE 并评估对 DNA 复制、起源激发、复制叉停止和重新启动的影响,
以及修复受损的复制叉。这些实验将有助于我们的基础研究
了解 BLBC 对 DNA 复制抑制和 DNA 损伤诱导的敏感性。
最后,NFS1 抑制通过非凋亡形式的细胞死亡使细胞对氧化损伤敏感
称为铁死亡。我们的发现导致了一个有趣的可能性,即铁饥饿反应的激活
在铁充足的条件下,从而诱使癌细胞吸收过量的铁,将使它们高度
容易受到进一步的氧化应激并因铁死亡而死亡。通过机械地理解如何最好地
激活 NFS1 下游的铁饥饿反应,我们预计我们将获得以下好处
诱导对氧化剂的敏感性增加,而不必针对一般的细胞必需途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Lewis Possemato其他文献
Richard Lewis Possemato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Lewis Possemato', 18)}}的其他基金
Regulation Of Metabolism And Gene Expression By Iron-Sulfur Clusters - Resubmission - 1
铁硫簇对代谢和基因表达的调节 - 重新提交 - 1
- 批准号:
9885268 - 财政年份:2020
- 资助金额:
$ 39.07万 - 项目类别:
Regulation Of Metabolism And Gene Expression By Iron-Sulfur Clusters - Resubmission - 1
铁硫簇对代谢和基因表达的调节 - 重新提交 - 1
- 批准号:
10539296 - 财政年份:2020
- 资助金额:
$ 39.07万 - 项目类别:
Regulation Of Metabolism And Gene Expression By Iron-Sulfur Clusters - Resubmission - 1
铁硫簇对代谢和基因表达的调节 - 重新提交 - 1
- 批准号:
10227441 - 财政年份:2020
- 资助金额:
$ 39.07万 - 项目类别:
Regulation Of Metabolism And Gene Expression By Iron-Sulfur Clusters - Supplement
铁硫簇对代谢和基因表达的调节 - 补充
- 批准号:
10669888 - 财政年份:2020
- 资助金额:
$ 39.07万 - 项目类别:
Regulation Of Metabolism And Gene Expression By Iron-Sulfur Clusters - Resubmission - 1
铁硫簇对代谢和基因表达的调节 - 重新提交 - 1
- 批准号:
10534796 - 财政年份:2020
- 资助金额:
$ 39.07万 - 项目类别:
Regulation Of Metabolism And Gene Expression By Iron-Sulfur Clusters - Supplement
铁硫簇对代谢和基因表达的调节 - 补充
- 批准号:
10738651 - 财政年份:2020
- 资助金额:
$ 39.07万 - 项目类别:
Rapid Determination of Phenotypic Responses Across Cancer Cell Lines
快速测定癌细胞系的表型反应
- 批准号:
8959212 - 财政年份:2015
- 资助金额:
$ 39.07万 - 项目类别:
Identification of Metabolic Liabilities in Breast Cancer
乳腺癌代谢负担的识别
- 批准号:
8920191 - 财政年份:2014
- 资助金额:
$ 39.07万 - 项目类别:
Identification of Metabolic Liabilities in Breast Cancer
乳腺癌代谢负担的识别
- 批准号:
8352910 - 财政年份:2012
- 资助金额:
$ 39.07万 - 项目类别:
相似国自然基金
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
可代谢调控弱碱性钠盐纳米材料的控制合成及其在增强癌症免疫治疗中的应用
- 批准号:52372273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥UBC34通过介导ABA的合成与代谢调控盐胁迫应答的机制研究
- 批准号:32300248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
葡萄糖神经酰胺合成酶GCS调控植物磷代谢的分子机制研究
- 批准号:32300234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
Exercise-Induced Recovery of Intervertebral Disc Health
运动引起的椎间盘健康恢复
- 批准号:
10745782 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
A novel therapeutic approach for Alzheimer Disease (AD)
阿尔茨海默病(AD)的新治疗方法
- 批准号:
10740016 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
Cerebrovascular endothelial cilia in the pathogenesis and therapy of Alzheimer's disease
脑血管内皮纤毛在阿尔茨海默病发病机制和治疗中的作用
- 批准号:
10575082 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
The regulation of cancer and aging by methionine
蛋氨酸对癌症和衰老的调节
- 批准号:
10750559 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别: